摘要:
The method of metallization in the fabrication of an integrated circuit device comprises the steps as follows. First, a dielectric layer overlying a semiconductor substrate is provided. The dielectric layer has a top surface and a plurality of openings. Next, a metal layer is formed on the dielectric layer and filling the openings. Subsequently, a first removing process is performed to partially removing the metal layer. A first annealing process is performed on the metal layer. Finally, a second removing process is performed to remove the metal layer completely to leave the metal layer only within the openings.
摘要:
An electro-chemical plating system includes an upper rotor assembly for receiving and holding a wafer; an electroplating reactor vessel for containing plating solution in which the wafer is immersed; an anode array including a plurality of concentric anode segments provided inside the electroplating reactor vessel; a power supply system including power supply subunits for controlling electrical potentials of the anode segments, respectively; and a plurality of sensor devices mounted inside the upper rotor assembly, wherein the sensor devices are substantially arranged in corresponding to the anode segments, and during operation, the plurality of sensor devices are utilized for in-situ feeding back a deposition profile to a control unit in real time.
摘要:
An electro-chemical plating system includes an upper rotor assembly for receiving and holding a wafer; an electroplating reactor vessel for containing plating solution in which the wafer is immersed; an anode array including a plurality of concentric anode segments provided inside the electroplating reactor vessel; a power supply system including power supply subunits for controlling electrical potentials of the anode segments, respectively; and a plurality of sensor devices mounted inside the upper rotor assembly, wherein the sensor devices are substantially arranged in corresponding to the anode segments, and during operation, the plurality of sensor devices are utilized for in-situ feeding back a deposition profile to a control unit in real time.
摘要:
A metal gate structure includes a high-K gate dielectric layer, an N-containing layer, a work function metal layer, and an N-trapping layer. The N-containing layer is positioned between the work function metal layer and the high-K gate dielectric layer. The N-trapping layer is positioned between the work function metal layer and the high-K gate dielectric layer, and the N-trapping layer contains no nitrogen or low-concentration nitrogen.
摘要:
An electronic apparatus includes a first casing, a shielding component, a waveguide component and an electronic component. The first casing includes a surface. The shielding component is disposed at the surface. The waveguide component is disposed at the surface and located above the shielding component. The waveguide component and the shielding component are integratedly formed. The electronic component is disposed at the surface and electrically connected to the waveguide component. The electronic apparatus can reduce manufacture cost, labor cost, and the thickness of the display screen.
摘要:
The present invention relates a transient voltage suppressor (TVS) for directional ESD protection. The TVS includes: a conductivity type substrate; a first type lightly doped region, having a first type heavily doped region arranged therein; a second type lightly doped region, having a second type heavily doped region and a third type heavily doped region arranged therein; a third type lightly doped region, having a fourth type heavily doped region arranged therein; a plurality of closed isolation trenches, arranged on the conductivity type substrate, wherein at least one of the plurality of closed isolation trenches is neighbored one of the type lightly doped regions; and a first pin. Accordingly, the TVS of present invention may adaptively provide effective ESD protection under positive and negative ESD stresses, improve the efficiency of ESD protection within the limited layout area.
摘要:
A new ESD protection device with an integrated-circuit vertical transistor structure is disclosed, which includes a heavily doped p-type substrate (P+ substrate), a n-type well (N well) in the P+ substrate, a heavily doped p-type diffusion (P+ diffusion) in the N well, a heavily doped n-type diffusion (N+ diffusion) in the N well, and a p-type well (P well) surrounding the N well in the P+ substrate. A bond pad is connected to both the P+ and N+ diffusions, and a ground is coupled to the P+ substrate. Another P+ diffusion is implanted in the N well or another N+ diffusion is implanted in the P well to form a Zener diode, which behaves as a trigger for the PNP transistor when a positive ESD zaps. A parasitic diode is formed at the junction between the P+ substrate and the N well, to bypass a negative ESD stress on the bond pad.
摘要:
An antenna radome is provided. The antenna radome comprises an antenna radome substrate and a unit cell. The unit cell is formed on a surface of the antenna radome substrate, and the unit cell is perpendicular to a magnetic field direction of an antenna. The unit cell comprises a plurality of conductors.
摘要:
A bidirectional transient voltage suppression device is disclosed. The bi-directional transient voltage suppression device comprises a semiconductor die. The semiconductor die has a multi-layer structure comprising a semiconductor substrate of a first conductivity type, a buried layer of a second conductivity type, an epitaxial layer, and five diffused regions. The buried layer and the semiconductor substrate form a first semiconductor junction. The first diffused region of the second conductivity type and the semiconductor substrate form a second semiconductor junction. The fourth diffused region of the first conductivity type and the third diffused region of the second conductivity type form a third semiconductor junction. The fifth diffused region of the first conductivity type and the second diffused region of the second conductivity type form a fourth semiconductor junction.
摘要:
A semiconductor device for electrostatic discharge (ESD) protection comprises a silicon controlled rectifier (SCR) including a semiconductor substrate, a first well formed in the substrate, a second well formed in the substrate, a first p-type region formed in the first well to serve as an anode, and a first n-type region partially formed in the second well to serve as a cathode, a p-type metal-oxide-semiconductor (PMOS) transistor formed in the first well including a gate, a first diffused region and a second diffused region separated apart from the first diffused region, a second n-type region formed in the first well electrically connected to the first diffused region of the PMOS transistor, and a second p-type region formed in the substrate electrically connected to the second diffused region of the PMOS transistor.