摘要:
An electronic device may have a display such as a liquid crystal display. The display may include a layer of liquid crystal material interposed between a color filter layer and a thin-film transistor layer. The thin-film transistor layer may be provided with capacitive touch sensor electrodes. Wide metal lines on the thin-film transistor layer may be used to inhibit parasitic capacitances during touch sensor mode. The color filter layer may include a layer of black masking material that surrounds the active display area. A light-curable adhesive may used to attach the color filter layer to the thin-film transistor layer. Openings may be formed in the black masking material and in the metal lines on the thin-film transistor layer. The adhesive may be cured by applying ultraviolet light to the adhesive through the openings in the black masking material and through the openings in the metal lines.
摘要:
Displays such as organic light-emitting diode displays may be provided with touch sensing capabilities. A touch sensor may be formed from electrodes located on a thin-film encapsulation layer or one or more sides of a polarizer. A single-sided or double-sided touch sensor panel may be attached to the upper or lower surface of a polarizer. Control circuitry may be used to provide control signals to light-emitting diodes in the display using a grid of control lines. The control lines and transparent electrode structures such as indium tin oxide structures formed on a thin-film encapsulation layer or polarizer may be used as electrodes for a touch sensor. Displays may have active regions and inactive peripheral portions. The displays may have edge portions that are bent along a bend axis that is within the active region to form a borderless display. Virtual buttons may be formed on the bent edge portions.
摘要:
Systems for controlling pixels are provided. A representative system comprises a scan driver comprises: a data signal line operative to provide data to the pixel; and a scan driver operative to control illumination of the pixel during sequential time periods such that, if data provided by the data signal line is different between a first time period and a second time period, brightness of the pixel differs during a third time period and a sequential fourth time period. The pixel is illuminated during the third time period and the fourth time period.
摘要:
A patterning method is provided. A patterned photoresist layer is formed on a bottom anti-reflective coating (BARC), having therein an opening exposing a portion of the BARC. The patterned photoresist layer is treated with a first plasma-generating gas including a fluorocarbon species to form a polymer layer on the surface of the PR layer and the sidewall of the opening. The patterned photoresist layer is used as a mask to etch the BARC with a second plasma-generating gas, which includes Ar and H2 but no fluorocarbon species or oxygen-containing species, to remove the exposed portion of the BARC.
摘要:
A light-emitting device and the fabrication method thereof. A substrate is provided. A plurality of active elements are formed on the substrate, defining a plurality of pixel areas. A color filter is formed on the pixel areas. The surface of the color filter is planarized to reduce roughness. An electrode is formed on the color filter. An light-emitting layer is formed on the electrode. A second electrode is formed on the light-emitting layer.
摘要:
Systems for displaying images and fabrication method thereof are provided. A representative system incorporates an electroluminescent device including light emitting units emitting lights with different luminescent intensities along light emitting paths thereof, formed overlying a substrate. And a compensation layer is disposed along the light emitting paths to adjust the different luminescent intensities for outputting substantially uniform light.
摘要:
To satisfy the different requirement of TFTs function as peripheral driving circuit and pixel switching device, the modified TFT structure with various thicknesses of gate insulating layers is disclosed. For the peripheral driving circuit, the thinner thickness of the gate-insulating layer is formed, the higher driving ability the TFT performs. However, for the pixel switching device, the thicker thickness of the gate insulating layer is formed, the better reliability the TFT has. The present invention provides a first TFT (peripheral driving circuit) comprising a first gate insulating layer and a second TFT (pixel switching device) comprising a first and second gate insulating layer. Thus, the gate insulating layer of the peripheral driving circuit has a thickness less then that of the pixel switching device.
摘要:
A thin film transistor (TFT) with a self-aligned lightly-doped region and a fabrication method thereof. An active layer has a channel region, a first doped region and a second doped region, in which the first doped region is disposed between the channel region and the second doped region. A gate insulating layer formed overlying the active layer has a central region, a shielding region and an extending region. The shielding region is disposed between the central region and the extending region, the central region covers the channel region, the shielding region covers the first doped region, and the extending region covers the second doped region. The shielding region is thicker than the extending region. A gate layer is formed overlying the gate insulating layer, covers the central region and exposes the shielding region and the extending region.
摘要:
Array substrates for electroluminescent (EL) devices and methods of forming the same are disclosed. The array substrates for electroluminescent (EL) devices include a substrate with at least one thin film transistor formed thereon, covered by a planarization layer. A first dielectric passivation layer with a contact hole therein covers parts of the planarization layer and exposes a source/drain electrode of the thin film transistor. A transparent electrode covers a portion of the first electric passivation layer and fills the contact hole, and is partly exposed by a patterned second dielectric passivation formed thereon. A plurality of spacers covers a portion of the second dielectric passivation layer to define an organic electroluminescent area with an exposed transparent electrode. An organic electroluminescent layer covers the exposed transparent electrode, and an electrode covers the organic electroluminescent layer.
摘要:
A method for making a thin film transistor (TFT) with a lightly doped region. The process of the invention is compatible with the currently common TFT manufacturing processes. A substrate with a photoresist layer thereon is subjected to two-step exposure with different exposure energies to form a full-through pattern and a non-through pattern after development. The same photoresist layer is subjected to two etching steps to form a gate region and an intra-gate region. The gate region and the intra-gate region are respectively doped with different dopant concentrations. Therefore, the number of times forming and exposing the photoresist layer is reduced.