摘要:
A novel optical compensatory sheet is disclosed. The sheet comprises an optically anisotropic layer comprising at least one compound selected from the group represented by Formula (I): where L1, L2 and L3 respectively represent a single bond, NRa, where Ra is a hydrogen atom (H), an optionally substituted alkyl or aryl group, oxygen atom (O) or sulfur atom (S); A1, A2 and A3 respectively represent an alkylene group; R1, R2 and R3 respectively represent a substituent group; m1, m2 and m3 respectively represent an integer not less than 0, at least one of m1, m2 and m3 is not 0, when m1 and m2 are 0, L3 represents NH or S; and when m1, m2 and m3 are respectively not less than 2, plural A1, A2 or A3 may be same or different each other.
摘要:
A compound of formula (1): wherein A1 and A2 are —O—, —NR—, —S—, or —CO—, in which R is a hydrogen atom or substituent; Z is one or two atoms selected from a carbon atom or a non-metal atom of Group 14, 15 or 16 in the Periodic Table, and forms a five- or six-membered ring with the C—C═C—C or C═C—C═C; R1, R2, and R3 each are a substituent; m is an integer of 0 to 4; L1 and L2 are a single bond or divalent linking group; X is a non-metal atom of Group 14, 15 or 16 in the Periodic Table, and may have a hydrogen atom or R4; and at least one of R, R1, R2, R3, and R4 is substituted with a polymerizable group; a liquid crystal composition, an optical film, a retardation sheet, a polarizing plate, and a liquid crystal display.
摘要:
A compound of formula (1): wherein A1 and A2 are —O—, —NR—, —S—, or —CO—, in which R is a hydrogen atom or substituent; Z is one or two atoms selected from a carbon atom or a non-metal atom of Group 14, 15 or 16 in the Periodic Table, and forms a five- or six-membered ring with the C—C═C—C or C═C—C═C; R1, R2, and R3 each are a substituent; m is an integer of 0 to 4; L1 and L2 are a single bond or divalent linking group; X is a non-metal atom of Group 14, 15 or 16 in the Periodic Table, and may have a hydrogen atom or R4; and at least one of R, R1, R2, R3, and R4 is substituted with a polymerizable group; a liquid crystal composition, an optical film, a retardation sheet, a polarizing plate, and a liquid crystal display.
摘要:
A polarizing film comprising a substrate, and a photo alignment film and a light absorption anisotropic film laminated on the substrate in this order, wherein the light absorption anisotropic film has a content ratio of 30% by mass or less of a liquid crystalline non-colorable low molecular weight compound and is obtained by fixing the alignment of a dichroic dye composition comprising at least one nematic liquid crystalline azo dichroic dye; in X-ray diffraction measurement thereof, diffraction peaks derived from periodic structure along a vertical direction to the alignment axis are present, the period indicated by at least one of the diffraction peaks is 3.0 to 15.0A and an intensity of the diffraction peak does not show a maximum value in the range of ±70° of the film normal line direction in a plane vertical to the alignment axis.
摘要:
Disclosed is a coating solution for use in the formation of an intermediate layer in an organic electroluminescence element which comprises at least a pair of electrodes, a light-emitting layer arranged between the pair of electrodes and comprising an organic material, and the intermediate layer arranged between one of the electrodes and the light-emitting layer. The coating solution is produced by dissolving an alkali metal salt.
摘要:
A process of readily producing a patterned birefringent product excellent in resolution and heat-resistance is provided. Said process comprises at least the following steps [1] to [3] in order: [1] preparing a birefringence pattern builder which comprises an optically anisotropic layer comprising a polymer, and said optically anisotropic layer has a retardation disappearance temperature in the range higher than 20° C., at said retardation disappearance temperature in-plane retardation becomes 30% or lower of the retardation at 20° C. of the same optically anisotropic layer, and said retardation disappearance temperature rises by light exposure; [2] subjecting the birefringence pattern builder to patterned light exposure; [3] heating the laminated structure obtained after the step [2] at 50° C. or higher and 400° C. or lower.
摘要:
A novel optically anisotropic film useful for optical compensation of a liquid crystal display device is provided. The optically anisotropic film has a distorted twisted spiral structure, which is formed from a liquid-crystalline composition comprising a liquid-crystalline compound and at least one optically active compound the torsional force of which is changed by light. The optically anisotropic film is produced, for example by (1) heating a liquid-crystalline composition to temperature T1; and (2) irradiating the liquid-crystalline composition with polarized light at temperature T2, provided TNI
摘要:
It is an object of the present invention to provide an organic electroluminescence element which can be easily produced and has a good light-emitting property and a good lifetime property, and a method for producing the same.That is, the present invention provides the organic electroluminescence element comprising an anode, a light-emitting layer and a cathode, and further comprising a metal doped molybdenum oxide layer provided between the anode and the light-emitting layer; and the method for producing the organic electroluminescence element including a stacking step to obtain a metal doped molybdenum oxide layer by simultaneously depositing molybdenum oxide and a dopant metal on another layer which constitutes the element.
摘要:
Disclosed is a coating solution for use in the formation of an intermediate layer in an organic electroluminescence element which comprises at least a pair of electrodes, a light-emitting layer arranged between the pair of electrodes and comprising an organic material, and the intermediate layer arranged between one of the electrodes and the light-emitting layer. The coating solution is produced by dissolving an alkali metal salt.
摘要:
The light-emitting element according to the present invention is characterized in that: the light-emitting element comprises a light-emitting layer that is sealed at a light extracting side with a multilayer sealing film and the multilayer sealing film includes at least one color conversion layer. Then, the method for producing the light-emitting element according to the present invention is characterized in that: the method for producing a light-emitting element that has a light-emitting layer sealed at a light extracting side with a multilayer sealing film, comprises forming at least one color conversion layer in a formation of the multilayer sealing film. The light-emitting element according to the present invention incorporates a function of controlling color conversion of its extracted light without increasing a occupied space for the element.