Method and apparatus for recommendation engine using pair-wise co-occurrence consistency
    2.
    发明申请
    Method and apparatus for recommendation engine using pair-wise co-occurrence consistency 有权
    推荐引擎使用成对一致性的方法和装置

    公开(公告)号:US20070094066A1

    公开(公告)日:2007-04-26

    申请号:US11327822

    申请日:2006-01-06

    IPC分类号: G06F17/30

    摘要: The invention, referred to herein as PeaCoCk, uses a unique blend of technologies from statistics, information theory, and graph theory to quantify and discover patterns in relationships between entities, such as products and customers, as evidenced by purchase behavior. In contrast to traditional purchase-frequency based market basket analysis techniques, such as association rules which mostly generate obvious and spurious associations, PeaCoCk employs information-theoretic notions of consistency and similarity, which allows robust statistical analysis of the true, statistically significant, and logical associations between products. Therefore, PeaCoCk lends itself to reliable, robust predictive analytics based on purchase-behavior.

    摘要翻译: 本发明在本文中称为PeaCoCk,使用来自统计学,信息理论和图形理论的独特技术融合来量化和发现实体(例如产品和客户)之间的关系中的模式,如购买行为所证明的。 与传统的基于购买频率的市场篮子分析技术(如大多数产生明显和虚假关联的关联规则)相反,PeaCoCk采用信息理论的一致性和相似性概念,这使得对真实的,统计上显着的和合乎逻辑的逻辑分析 产品之间的关联。 因此,PeaCoCk可以根据购买行为进行可靠,强大的预测分析。

    Method and apparatus for retail data mining using pair-wise co-occurrence consistency
    3.
    发明申请
    Method and apparatus for retail data mining using pair-wise co-occurrence consistency 有权
    零售数据挖掘的方法和装置,使用成对的同现一致性

    公开(公告)号:US20070100680A1

    公开(公告)日:2007-05-03

    申请号:US11256386

    申请日:2005-10-21

    IPC分类号: G06F17/30

    摘要: The invention, referred to herein as PeaCoCk, uses a unique blend of technologies from statistics, information theory, and graph theory to quantify and discover patterns in relationships between entities, such as products and customers, as evidenced by purchase behavior. In contrast to traditional purchase-frequency based market basket analysis techniques, such as association rules which mostly generate obvious and spurious associations, PeaCoCk employs information-theoretic notions of consistency and similarity, which allows robust statistical analysis of the true, statistically significant, and logical associations between products. Therefore, PeaCoCk lends itself to reliable, robust predictive analytics based on purchase-behavior.

    摘要翻译: 本发明在本文中称为PeaCoCk,使用来自统计学,信息理论和图形理论的独特技术融合来量化和发现实体(例如产品和客户)之间的关系中的模式,如购买行为所证明的。 与传统的基于购买频率的市场篮子分析技术(如大多数产生明显和虚假关联的关联规则)相反,PeaCoCk采用信息理论的一致性和相似性概念,这使得对真实的,统计上显着的和合乎逻辑的逻辑分析 产品之间的关联。 因此,PeaCoCk可以根据购买行为进行可靠,强大的预测分析。

    METHOD AND APPARATUS FOR RECOMMENDATION ENGINE USING PAIR-WISE CO-OCCURRENCE CONSISTENCY
    4.
    发明申请
    METHOD AND APPARATUS FOR RECOMMENDATION ENGINE USING PAIR-WISE CO-OCCURRENCE CONSISTENCY 有权
    使用配对联合一致性推荐发动机的方法和装置

    公开(公告)号:US20100324985A1

    公开(公告)日:2010-12-23

    申请号:US12857317

    申请日:2010-08-16

    IPC分类号: G06Q30/00 G06N5/02

    摘要: The invention, referred to herein as PeaCoCk, uses a unique blend of technologies from statistics, information theory, and graph theory to quantify and discover patterns in relationships between entities, such as products and customers, as evidenced by purchase behavior. In contrast to traditional purchase-frequency based market basket analysis techniques, such as association rules which mostly generate obvious and spurious associations, PeaCoCk employs information-theoretic notions of consistency and similarity, which allows robust statistical analysis of the true, statistically significant, and logical associations between products. Therefore, PeaCoCk lends itself to reliable, robust predictive analytics based on purchase-behavior.

    摘要翻译: 本发明在本文中称为PeaCoCk,使用来自统计学,信息理论和图形理论的独特技术融合来量化和发现实体(例如产品和客户)之间的关系中的模式,如购买行为所证明的。 与传统的基于购买频率的市场篮子分析技术(如大多数产生明显和虚假关联的关联规则)相反,PeaCoCk采用信息理论的一致性和相似性概念,这使得对真实的,统计上显着的和合乎逻辑的逻辑分析 产品之间的关联。 因此,PeaCoCk可以根据购买行为进行可靠,强大的预测分析。

    Method and apparatus for recommendation engine using pair-wise co-occurrence consistency
    5.
    发明授权
    Method and apparatus for recommendation engine using pair-wise co-occurrence consistency 有权
    推荐引擎使用成对一致性的方法和装置

    公开(公告)号:US08015140B2

    公开(公告)日:2011-09-06

    申请号:US12857317

    申请日:2010-08-16

    IPC分类号: G06F17/00 G06N5/02

    摘要: The invention, referred to herein as PeaCoCk, uses a unique blend of technologies from statistics, information theory, and graph theory to quantify and discover patterns in relationships between entities, such as products and customers, as evidenced by purchase behavior. In contrast to traditional purchase-frequency based market basket analysis techniques, such as association rules which mostly generate obvious and spurious associations, PeaCoCk employs information-theoretic notions of consistency and similarity, which allows robust statistical analysis of the true, statistically significant, and logical associations between products. Therefore, PeaCoCk lends itself to reliable, robust predictive analytics based on purchase-behavior.

    摘要翻译: 本发明在本文中称为PeaCoCk,使用来自统计学,信息理论和图形理论的独特技术融合来量化和发现实体(例如产品和客户)之间的关系中的模式,如购买行为所证明的。 与传统的基于购买频率的市场篮子分析技术(如大多数产生明显和虚假关联的关联规则)相反,PeaCoCk采用信息理论的一致性和相似性概念,这使得对真实的,统计上显着的和合乎逻辑的逻辑分析 产品之间的关联。 因此,PeaCoCk可以根据购买行为进行可靠,强大的预测分析。

    Method and apparatus for recommendation engine using pair-wise co-occurrence consistency
    6.
    发明授权
    Method and apparatus for recommendation engine using pair-wise co-occurrence consistency 有权
    推荐引擎使用成对一致性的方法和装置

    公开(公告)号:US07801843B2

    公开(公告)日:2010-09-21

    申请号:US11327822

    申请日:2006-01-06

    IPC分类号: G06F15/18 G06F17/00 G06N5/04

    摘要: The invention, referred to herein as PeaCoCk, uses a unique blend of technologies from statistics, information theory, and graph theory to quantify and discover patterns in relationships between entities, such as products and customers, as evidenced by purchase behavior. In contrast to traditional purchase-frequency based market basket analysis techniques, such as association rules which mostly generate obvious and spurious associations, PeaCoCk employs information-theoretic notions of consistency and similarity, which allows robust statistical analysis of the true, statistically significant, and logical associations between products. Therefore, PeaCoCk lends itself to reliable, robust predictive analytics based on purchase-behavior.

    摘要翻译: 本发明在本文中称为PeaCoCk,使用来自统计学,信息理论和图形理论的独特技术融合来量化和发现实体之间的关系中的模式,例如产品和客户,如购买行为所证明的。 与传统的基于购买频率的市场篮子分析技术(如大多数产生明显和虚假关联的关联规则)相反,PeaCoCk采用信息理论的一致性和相似性概念,这使得对真实的,统计上显着的和合乎逻辑的逻辑分析 产品之间的关联。 因此,PeaCoCk可以根据购买行为进行可靠,强大的预测分析。

    Method and apparatus for initiating a transaction based on a bundle-lattice space of feasible product bundles
    7.
    发明授权
    Method and apparatus for initiating a transaction based on a bundle-lattice space of feasible product bundles 有权
    用于基于可行产品束的束格空间发起事务的方法和装置

    公开(公告)号:US07685021B2

    公开(公告)日:2010-03-23

    申请号:US11355567

    申请日:2006-02-15

    IPC分类号: G06Q30/00

    摘要: The invention, referred to herein as PeaCoCk, uses a unique blend of technologies from statistics, information theory, and graph theory to quantify and discover patterns in relationships between entities, such as products and customers, as evidenced by purchase behavior. In contrast to traditional purchase-frequency based market basket analysis techniques, such as association rules which mostly generate obvious and spurious associations, PeaCoCk employs information-theoretic notions of consistency and similarity, which allows robust statistical analysis of the true, statistically significant, and logical associations between products. Therefore, PeaCoCk lends itself to reliable, robust predictive analytics based on purchase-behavior.

    摘要翻译: 本发明在本文中称为PeaCoCk,使用来自统计学,信息理论和图形理论的独特技术融合来量化和发现实体(例如产品和客户)之间的关系中的模式,如购买行为所证明的。 与传统的基于购买频率的市场篮子分析技术(如大多数产生明显和虚假关联的关联规则)相反,PeaCoCk采用信息理论的一致性和相似性概念,这使得对真实的,统计上显着的和合乎逻辑的逻辑分析 产品之间的关联。 因此,PeaCoCk可以根据购买行为进行可靠,强大的预测分析。

    Method and apparatus for retail data mining using pair-wise co-occurrence consistency
    8.
    发明授权
    Method and apparatus for retail data mining using pair-wise co-occurrence consistency 有权
    零售数据挖掘的方法和装置,使用成对的同现一致性

    公开(公告)号:US07672865B2

    公开(公告)日:2010-03-02

    申请号:US11256386

    申请日:2005-10-21

    IPC分类号: G06F17/30

    摘要: The invention, referred to herein as PeaCoCk, uses a unique blend of technologies from statistics, information theory, and graph theory to quantify and discover patterns in relationships between entities, such as products and customers, as evidenced by purchase behavior. In contrast to traditional purchase-frequency based market basket analysis techniques, such as association rules which mostly generate obvious and spurious associations, PeaCoCk employs information-theoretic notions of consistency and similarity, which allows robust statistical analysis of the true, statistically significant, and logical associations between products. Therefore, PeaCoCk lends itself to reliable, robust predictive analytics based on purchase-behavior.

    摘要翻译: 本发明在本文中称为PeaCoCk,使用来自统计学,信息理论和图形理论的独特技术融合来量化和发现实体(例如产品和客户)之间的关系中的模式,如购买行为所证明的。 与传统的基于购买频率的市场篮子分析技术(如大多数产生明显和虚假关联的关联规则)相反,PeaCoCk采用信息理论的一致性和相似性概念,这使得对真实的,统计上显着的和合乎逻辑的逻辑分析 产品之间的关联。 因此,PeaCoCk可以根据购买行为进行可靠,强大的预测分析。

    Event driven change injection and dynamic extensions to a business process execution language process
    10.
    发明授权
    Event driven change injection and dynamic extensions to a business process execution language process 有权
    事件驱动的更改注入和业务流程执行语言流程的动态扩展

    公开(公告)号:US08572618B2

    公开(公告)日:2013-10-29

    申请号:US12776064

    申请日:2010-05-07

    IPC分类号: G09F9/46

    CPC分类号: G06F9/5038 G06F2209/5013

    摘要: An extensible process design provides an ability to dynamically inject changes into a running process instance, such as a BPEL instance. Using a combination of BPEL, rules and events, processes can be designed to allow flexibility in terms of adding new activities, removing or skipping activities and adding dependent activities. These changes do not require redeployment of the orchestration process and can affect the behavior of in-flight process instances. The extensible process design includes a main orchestration process, a set of task execution processes and a set of generic trigger processes. The design also includes a set of rules evaluated during execution of the tasks of the orchestration process. The design can further include three types of events: an initiate process event, a pre-task execution event and a post-task execution event. These events and rules can be used to alter the behavior of the main orchestration process at runtime.

    摘要翻译: 可扩展过程设计提供了将更改动态注入正在运行的流程实例(如BPEL实例)的功能。 使用BPEL,规则和事件的组合,可以设计流程以允许在添加新活动,删除或跳过活动以及添加依赖活动方面的灵活性。 这些更改不需要重新部署编排过程,并且可能影响飞行中流程实例的行为。 可扩展过程设计包括主要的编排过程,一组任务执行过程和一组通用触发过程。 该设计还包括在执行编排过程任务期间评估的一组规则。 该设计可以进一步包括三种类型的事件:启动过程事件,前任务执行事件和后任务执行事件。 这些事件和规则可用于在运行时改变主要业务流程的行为。