摘要:
Reconfigurable distributed active transformers are provided. The exemplary embodiments provided allow changing of the effective number and configuration of the primary and secondary windings, where the distributed active transformer structures can be reconfigured dynamically to control the output power levels, allow operation at multiple frequency bands, maintain a high performance across multiple channels, and sustain desired characteristics across process, temperature and other environmental variations. Integration of the distributed active transformer power amplifiers and a low noise amplifier on a semiconductor substrate can also be provided.
摘要:
Reconfigurable distributed active transformers are provided. The exemplary embodiments provided allow changing of the effective number and configuration of the primary and secondary windings, where the distributed active transformer structures can be reconfigured dynamically to control the output power levels, allow operation at multiple frequency bands, maintain a high performance across multiple channels, and sustain desired characteristics across process, temperature and other environmental variations. Integration of the distributed active transformer power amplifiers and a low noise amplifier on a semiconductor substrate can also be provided.
摘要:
A power amplifier circuit comprising a scalable power amplifier including an input and an output, and a plurality of activated amplifier elements operative to produce an output signal at the output, and operative to dynamically vary a power output level of the output signal. A variable impedance circuit operatively responsive to dynamically load the output of the scalable power amplifier. Wherein the scalable power amplifier further includes an amplifier configuration circuit operatively responsive to selectively activate the selectively activated amplifier elements by at least reducing power to at least one of the selectively activated amplifier elements.
摘要:
A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.
摘要:
Reconfigurable distributed active transformers are provided. The exemplary embodiments provided allow changing of the effective number and configuration of the primary and secondary windings, where the distributed active transformer structures can be reconfigured dynamically to control the output power levels, allow operation at multiple frequency bands, maintain a high performance across multiple channels, and sustain desired characteristics across process, temperature and other environmental variations. Integration of the distributed active transformer power amplifiers and a low noise amplifier on a semiconductor substrate can also be provided.
摘要:
A cascode circuit with improved withstand voltage is provided. The cascode circuit includes three or more transistors, such as MOSFET transistors. Each transistor has a control terminal, such as a gate, and two conduction terminals, such as a drain and a source. The conduction terminals are coupled in series between two output terminals, such as where the drain of each transistor is coupled to the source of another transistor. A signal input is provided to the gate for the first transistor. Two or more control voltage sources, such as DC bias voltages, are provided to the gate of the remaining transistors. The DC bias voltages are selected so as to maintain the voltage across each transistor to a level below a breakdown voltage level.
摘要:
Reconfigurable distributed active transformers are provided. The exemplary embodiments provided allow changing of the effective number and configuration of the primary and secondary windings, where the distributed active transformer structures can be reconfigured dynamically to control the output power levels, allow operation at multiple frequency bands, maintain a high performance across multiple channels, and sustain desired characteristics across process, temperature and other environmental variations. Integration of the distributed active transformer power amplifiers and a low noise amplifier on a semiconductor substrate can also be provided.
摘要:
A system for controlling amplifier power is provided. The system includes a voltage envelope detector receiving a voltage signal and generating an attenuated voltage envelope signal. A current envelope detector receives a current signal and generates an attenuated current envelope signal. A controller receives power level data and generates attenuation control data for the voltage envelope signal and the current envelope signal. A detector receives the voltage envelope signal and the current envelope signal and generates a control signal based on the greater of the voltage envelope signal and the current envelope signal. A power amplifier level controller receives the control signal and generates a power amplifier level control signal.
摘要:
An integrated power combiner is disclosed. The power combiner includes a first circular geometry primary winding having one or more inductive elements, such as an active winding with one or more driver stages. A circular geometry secondary winding is disposed adjacent to the first primary winding, such as an active winding with one or more driver stages. A second circular geometry primary winding is disposed adjacent to the secondary winding and has one or more inductive elements. One or more connections are provided between one or more of the inductive elements of the first circular geometry primary winding and one or more of the inductive elements of the second circular geometry primary winding.
摘要:
A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.