Abstract:
A circuit for the detection of a fuse with oxide vertical fusing has another fuse that is of the same type but cannot be blown and, in parallel with each of the fuses, a voltage reference circuit. The output of each of the voltage reference circuits is an input of a differential comparator. This differential comparator is preferably provided with a voltage reference circuit that is independent of the supply voltage Vcc.
Abstract:
A method for testing an integrated circuit includes, in a burn-in test mode, two steps during which gate oxides of conductive high voltage MOS transistors of the integrated circuit are subjected to a first test voltage, and blocked high voltage MOS transistors of the integrated circuit are subjected to a second test voltage. The first test voltage is set to a value higher than a high supply voltage supplied to the high voltage MOS transistors in a normal operating mode, to make the gate oxides of transistors considered as insufficiently robust break down. The second test voltage is set to a value lower than the first test voltage and which can be supported by the blocked transistors, the states of the transistors being changed between the two steps.
Abstract:
Embodiments of the disclosure relate to a method of evaluating a semiconductor wafer dicing process, comprising providing evaluation lines extending in at least one scribe line of the wafer, dicing the wafer in the scribe line, evaluating the length of the evaluation lines, providing an information about their length, and using the information to evaluate the dicing process.
Abstract:
A method for testing an integrated circuit is provided comprising steps of providing at least one first conductive path stretching along an element of the integrated circuit, applying a voltage at a point of the first conductive path, performing a first measurement of the voltage at a point of the first conductive path, and determining whether the integrated circuit is damaged according to the result of the first measurement. Application to the detection of damage due to the sawing or electrical testing of integrated circuits.
Abstract:
A CMOS circuit protected against latch-up. A limiter parallel to the internal circuitry of the CMOS circuit increases the external current for the triggering of the latch-up in the event of overvoltage on the supply. In one embodiment, the parallel limiter is intrinsically protected against electrostatic discharges. In another embodiment, the limiter is protected by a series connected resistor and a separate shunt-connected ESD protection structure.
Abstract:
To protect integrated circuits as efficiently as possible against electrostatic discharges, by putting a diode in avalanche mode without untimely triggering of this avalance mode by overvoltages of non-electrostatic origin, the following solution is proposed: through an insulated gate surrounding the cathode of the diode, the threshold for transition into avalanche mode of the diode is modified according to the slope of the overvoltages appearing at the terminal to be protected. The gate is connected to the terminal by an integrating circuit in such a way that the overvoltages are applied to the gate with a certain delay, inducing a potential difference between the cathode and the gate which is all the greater as the front of the overvoltage is steep. The avalanche triggering threshold is higher in the latter case than in the former one, and it is thus distinguish between overvoltages of diverse origins.
Abstract:
An electrically programmable and erasable non-volatile memory point may have at least one floating-gate transistor connected to a bit line and to a ground line, and may be programmed with a programming voltage. In an erase phase of the memory point, a first, negative, voltage may be applied to the bit line and to the ground line. The absolute value of the first voltage may be smaller than a threshold value of a PN diode. A second positive voltage which is smaller than the programming voltage may be applied to the control gate of the floating-gate transistor. The difference between the second voltage and the first voltage may be equal to the programming voltage, and, in a writing phase, the first negative voltage may be applied to the control gate of the floating-gate transistor, and the second voltage may be applied to the bit line.
Abstract:
A method for detecting a malfunction in a state machine is described. The state machine has an operation modeled by a set of states linked to each other by transitions, the state machine generating, upon each transition, output signals according to input signals comprising signals generated during a previous transition. During a transition, the method comprises steps of generating at least one control signal according to a control signal generated during a previous transition, determining an expected value of the control signal, and comparing the control signal with the expected value.
Abstract:
A voltage regulation device comprises a voltage regulator for regulating a direct voltage supplied by a voltage generator, the voltage regulator comprising means for stopping or activating the voltage generator depending on whether the voltage to be regulated is greater or lower than a setpoint voltage. The regulation device comprises a voltage limiter having a first threshold voltage greater than the setpoint voltage to clip a transient overvoltage greater than the first threshold voltage, appearing in the voltage to be regulated. Application can be made to the regulation of the high voltage used to program or erase a non-volatile memory.
Abstract:
A time base circuit, for an oscillator and apparatus, defines a time interval in terms of a time taken for a capacitor to charge from a reference voltage level to a detection voltage level. The circuit operates by: supplying at the start of the interval a capacitor charging current, using a first semiconductor device supplied from a first power supply voltage, the device delivering the charging current according to a predetermined dependency on the first power supply voltage; and identifying the detection voltage level to signal the end of the time interval, using a second semiconductor device supplied from the first power supply voltage, the second semiconductor device identifying the detection voltage level value according to the same predetermined dependency on the first power supply voltage as for the first semiconductor device, the time interval being made substantially independent of variations of the first power supply voltage.