Abstract:
A retrofit energization arrangement especially suitable for an aircraft wherein original factory-placed wiring can be reused in common bus form for plural new loads in order to avoid the expense and hazard of disassembling original wiring bundles for new conductor incorporation. Serviceable wiring possibly earlier retired in place or becoming unneeded from equipment removal can, by way of the invention, be used for plural diverse new loads including loads of disparate operating cycle and current requirements for example, even though energized via a common bus. In the disclosed apparatus both energizing current and load control signals are transmitted via the same electrical bus between control location and load areas of the aircraft where control decoding and energy tap-off occur, the latter by switch mode power supply if needed. Control signals of sinusoidal waveform, minimal electromagnetic and radio frequency interference character and limited existing bus filtering attenuation are disclosed; these may be embodied as the Frequency Shift Keying (FSK) or Continuous Tone Coded Squelch System, CTCSS, frequencies used in the radio communication art. Loads of differing types are disclosed as examples in the described embodiment of the invention; additional loads are feasible. Use of the invention in land vehicles, watercraft and building structures is also contemplated.
Abstract:
A field emission display (100) includes a cathode plate (110) having a plurality of electron emitters (114), an anode plate (122) having an anode (124) connected to a potential source (126), and an anode voltage pull-down circuit (127) having an input (106) and an output (104). Output (104) is connected to anode (124), and input (106) is connected to potential source (126). Preferably, anode voltage pull-down circuit (127) causes an anode voltage (120) at anode (124) to drop to about ground potential prior to generation of a discharge current by electron emitters (114) for neutralizing positively electrostatically charged surfaces (137, 138) within field emission display (100).
Abstract:
A method for forming a housing for an electronic device (510) includes providing a first rigid layer (102, 302) including a curved surface defining a cavity (108, 308). A first adhesive (112, 312) is optionally applied over the curved surface, and an electro-optic module (105, 305) having a flexible substrate and a viewable surface (111, 311), is conformally fitted on the first adhesive (112, 312). A second adhesive (114, 314) is optionally disposed over the electro-optic module (105, 305) and a support structure (122) is optionally placed on the second adhesive (114). The support structure (122) includes an attachment apparatus (126) for mounting electronic circuitry. The first and second adhesives (112, 114) are cured. One of the second adhesive (114) or both the first rigid layer (102, 301) and the first adhesive (112) are transparent for viewing a viewable surface (111, 311) on or coupled to the electro-optic module (105, 305).
Abstract:
A field emission device (100) is provided for reducing power and audible noise during discharging of dielectric surfaces (137, 138). The field emission device (100) comprises an anode (122) and a first substrate (111) including a cathode plate (110) comprising a plurality of active display devices (114) and dielectric surfaces (137, 138). The plurality of active display devices (114) emit electrons (132) to strike the anode during a scanning mode, and emit electrons (135) to strike the dielectric surfaces (137, 138) during a discharge mode. At least one of a plurality of spacers (136) positioned between the anode (122) and the cathode plate (110) comprise a first sense electrode (142) positioned proximate to the anode (122), and a second sense electrode (144) positioned proximate to the cathode plate (110) and spaced apart from the first sense electrode (142). A circuit (222, 224, 226) for sensing a difference in charge between the first and second sense electrodes (142, 144) is coupled to the anode (122) and cathode plate (110) for alternately initiating the scanning mode and the discharge mode in response to the difference in charge reaching a threshold.
Abstract:
A field emission display (100, 200) is provided having an increased discharged time, a reduced or eliminated visible “flash”, reduced power loss associated with pulling down the anode voltage, and reduced parasitic losses and external circuitry. The field emission display (100, 200) includes a first substrate (106) including a cathode plate (110) comprising a plurality of active display devices (102) preferably a plurality of carbon nanotubes (114), a plurality of discharge emitter devices (103) preferably a plurality of carbon nanotubes (117), and dielectric surfaces (137, 138), wherein the plurality of active display devices (102) emit electrons (132) during a scanning mode, and the plurality of discharge emitter devices (103) and the plurality of active display devices (102) emit electrons (132) to strike the dielectric surfaces (137, 138) during a discharge mode. An anode plate (122) is positioned to receive the electrons (132) from the plurality of active display devices (102) during the scanning mode. A series electron emitter device (103) positioned on a second substrate (322) preferably including a plurality of carbon nanotubes (328) is coupled to the anode plate (122) for reducing the voltage on the anode plate (122) during the discharge mode.
Abstract:
A method of removing, or otherwise rendering non-conductive, unwanted carbon nanotubes (132) from an electronic device (100) includes exposing at least a portion of the device to light emitted by one or more of light sources (202) that emit light. Those regions of the device that have wanted carbon nanotubes formed thereon can be selectively masked, by various methods, from the emitted light.
Abstract:
An electronic circuit apparatus (5) for a field emission device (14) comprises a charge emission device electrically connected to a charge ballast electronic circuit (13,15). The charge ballast electronic circuit includes a capacitance device (25,26) electrically connected in series with a transistor (10,12) and electrically connected in parallel with a resistor (28,23) where the capacitance is chosen to adjust a charge emitted by the field emission device.
Abstract:
A field emission device (100) is provided for reducing power and audible noise during discharging of dielectric surfaces (137, 138). The field emission device (100) comprises an anode (122) and a first substrate (111) including a cathode plate (110) comprising a plurality of active display devices (114) and dielectric surfaces (137, 138). The plurality of active display devices (114) emit electrons (132) to strike the anode during a scanning mode, and emit electrons (135) to strike the dielectric surfaces (137, 138) during a discharge mode. At least one of a plurality of spacers (136) positioned between the anode (122) and the cathode plate (110) comprise a first sense electrode (142) positioned proximate to the anode (122), and a second sense electrode (144) positioned proximate to the cathode plate (110) and spaced apart from the first sense electrode (142). A circuit (222, 224, 226) for sensing a difference in charge between the first and second sense electrodes (142, 144) is coupled to the anode (122) and cathode plate (110) for alternately initiating the scanning mode and the discharge mode in response to the difference in charge reaching a threshold.
Abstract:
An electro-optical device including a cathode plate, a plurality of emitters and an anode plate. The anode plate including a photoconductive layer formed on an interior surface and in alignment to receive emitter emissions. The device is characterized as matrix addressed according to an input signal. A varying video signal, in concert with the matrix scanning of the cathode, generates a video signal containing a scene imaged by the photoconductive layer of the anode plate.
Abstract:
An apparatus for probing high frequency electronic devices in wafer form comprising a high frequency wafer probe (16,56) having a conductor (36,61), a dielectric layer (37,71,72), a grounding layer (38,81,82,91), a signal probe needle (39,86), and a pair of ground needles (43,72,76) coupled to a substrate (11,51). A plurality of high frequency wafer probes (16,56) can be coupled to the substrate (11,51) to probe high density high frequency electronic devices and to probe high frequency electronic devices having varying bonding pad layouts. The high frequency wafer probe (16,56) is less sensitive to varying bonding pad height. The apparatus is suitable for probing high frequency electronic devices in a wafer manufacturing environment.