Abstract:
A communication control function is implemented with limited hardware resources without hampering the extensibility and degrading the processing performance. In an electric control unit coupled to a network bus comprises a reconfiguration module using for processing message received from the network bus. The reconfiguration module is made for configuring the processing circuit in accordance with the message transferred on the network bus to be processed.
Abstract:
A high-frequency filter for use in a superhigh frequency band such as of microwaves and millimeter waves has a substrate, a metal conductor disposed on a first main surface of the substrate, a resonator comprising a transmission line of a coplanar structure which is made of the metal conductor, and input and output lines disposed on a second main surface of the substrate transversely across the resonator and electromagnetically coupled to the resonator. The resonator may be a coplanar line resonator (coplanar waveguide resonator) or a slot line resonator. The high-frequency filter has a steep attenuating gradient in filter characteristics. The high-frequency filter may be combined with variable-reactance devices such as variable-capacitance diodes for electronically controlling the filter characteristics.
Abstract:
There is provided a semiconductor device which is simple in configuration and resistant to tampering. A user input unit receives an authentication code input by a user. A CPU determines whether a user's access is legal based on the input authentication code and activates an enable signal if the user's access is legal. A normal row decoder decodes the row address specified by the CPU and selects a normal memory cell of any row based on the result of decode. A redundancy row decoder prohibits the selection by the normal row decoder when the specified row address agrees with the row address of a predetermined normal memory cell only if the enable signal is activated and selects a redundant memory cell of any row.
Abstract:
A base station (5) comprises a base transmitter (6) for transmitting information optically to a plurality of portable stations (1 to 4) at such a predetermined time interval as is designated by portable station designating information. Each of the portable stations (1 to 4) comprises a potable transmitter (7) for transmitting information optically to the base station (5) in response to the transmission, which is designated by the portable station designating information coming from said base station (5), and within the range of the aforementioned time interval immediately after said transmission. Transmissions (ACK1 to ACK4) from the mating portable stations to the base station are individually inserted between the interval periods of the transmissions (REQ1 to REQ4) from the base station (5) to the portable stations (1 to 4) so that the single base station performs optical communications with the plurality of portable stations in a half-duplex time sharing manner.
Abstract:
Reprogramming substances capable of substituting for Klf4, selected from the group consisting of members of the IRX family (e.g., IRX6), members of the GLIS family (e.g., GLIS1), members of the PTX family (e.g., PITX2), DMRTB1, and nucleic acids that encode the same, are provided. Also provided are a method of producing iPS cells, comprising the step of introducing into a somatic cell both one or more kinds of the above-described nuclear reprogramming substances and a substance capable of inducing iPS cells from a somatic cell when combined with Klf4. Still also provided are iPS cells comprising an extraneous nucleic acid that encodes any one of the above-described nuclear reprogramming substances, that can be obtained by the method, and a method of producing somatic cells by inducing the iPS cells to differentiate.
Abstract:
Provided are a method of improving the efficiency of establishment of iPS cells, comprising the step of contacting one or more substances selected from the group consisting of members of the GLIS family (e.g., GLIS1) and nucleic acids that encode the same and one or more substances selected from the group consisting of members of the Klf family and nucleic acids that encode the same, with a somatic cell, an iPS cell comprising an exogenous nucleic acid that encodes a member of the GLIS family or a member of the Klf family, that can be obtained by the method, and a method of producing a somatic cell by inducing the differentiation of the iPS cell.
Abstract:
Provided are a method of improving the efficiency of establishment of iPS cells, comprising the step of contacting one or more substances selected from the group consisting of members of the GLIS family (e.g., GLIS1) and nucleic acids that encode the same and one or more substances selected from the group consisting of members of the Klf family and nucleic acids that encode the same, with a somatic cell, an iPS cell comprising an exogenous nucleic acid that encodes a member of the GLIS family or a member of the Klf family, that can be obtained by the method, and a method of producing a somatic cell by inducing the differentiation of the iPS cell.
Abstract:
Reprogramming substances capable of substituting for Klf4, selected from the group consisting of members of the IRX family (e.g., IRX6), members of the GLIS family (e.g., GLIS1), members of the PTX family (e.g., PITX2), DMRTB1, and nucleic acids that encode the same, are provided. Also provided are a method of producing iPS cells, comprising the step of introducing into a somatic cell both one or more kinds of the above-described nuclear reprogramming substances and a substance capable of inducing iPS cells from a somatic cell when combined with Klf4. Still also provided are iPS cells comprising an extraneous nucleic acid that encodes any one of the above-described nuclear reprogramming substances, that can be obtained by the method, and a method of producing somatic cells by inducing the iPS cells to differentiate.
Abstract:
A semiconductor device disclosed herein is provided with a plurality of function reconfigurable cells, each comprising a memory circuit and a control circuit, for realizing variable logical functions. A function reconfigurable cell autonomously controls a read address in the memory circuit storing true value data by itself. For example, the control circuit takes feedback input of information that has been read from the data field and control field of the memory circuit synchronously and uses feedback input information from the data field or another information as address information for next synchronous reading of the data field and control field, based on feedback input information from the control field. Because each function reconfigurable cell is capable of autonomous control of reading of the memory circuit storing true value data by itself, it is possible to handle the memory circuit for realizing variable logical functions as a circuit equivalent to a logic circuit. It is thus possible to provide flexibility of logical configurations and scalability that can be realized. Further, it becomes possible to realize variable logical functions that can accommodate a large logical element in a limited chip area occupied for memory.