Abstract:
A method is disclosed for determining the biodistribution of substances using fluorescence spectroscopy. A photosensitizing agent or other intrinsically fluorescent agent, or an agent labeled with an extrinsic fluorophor is administered to a subject. A fiberoptic probe integrated with an excitation light source illuminates the examined tissue and causes fluorescence. The fluorescence is recorded by a spectrograph and plotted as a spectral curve. The intensity ratio (S1/S2) for the fluorescence from the photosensitizing agent (S1) and autofluorescence (S2) for the examined tissue is used as an index for drug presence and compared with the intensity ratio at the same wavelengths for various tissues.
Abstract:
An endodontic apparatus and related method for the instant detection of the anatomical structure of a tooth and for the restoration of a dead or severely decayed tooth using induced fluorescence spectroscopy. A root canal probe having an optical fiber through its center transmits excitation light into the tooth's root canal. The excitation light induces the tissue within the root canal to fluoresce. The fluorescent light is collected by the optical fiber and transmitted back to a sensor that generates electrical signals indicative of the intensity of light within predetermined wavelength bands. The electrical signals are processed to identify the tissues within the root canal. The probe may include a slightly conical metal surface having flutes for shaving and removing dentin from within the root canal. Using the fluorescent emission properties of the tissues of components of a tooth, the entrance of the root canal is located. The root canal is cleaned and shaped and the apex of the root canal located using the difference between the fluorescence spectrum of the apex and the root canal. The root canal is sealed and filled by a light cure restorative delivered into the root canal through a tube. The light cure restorative is activated by light transmitted into the root canal by an optical fiber. The light activation and polymerization of the light cure restorative can be controlled by monitoring the intensity of the restorative's fluorescence spectrum.
Abstract:
A burn evaluation apparatus and related method, that allows a surgeon to make a quick evaluation of the extent and depth of a skin burn injury by employing induced ultraviolet or blue light fluorescence spectroscopy and visible and infrared reflectance spectroscopy. The apparatus monitors the condition of the structural and metabolic constituents in the injured skin. The apparatus includes a plurality of light sources, a sensor, a microprocessor, and several optical fiber bundles. The light sources emit excitation light at predetermined wavelengths, and when each is activated, the sensor measures the amount return light received within several wavelength bands of interest. A side fiber bundle spaced about a centimeter from a main fiber bundle assists in detecting tissue water below the burn area. By optically evaluating the skin at the burn site, the apparatus prevents the unnecessary removal of viable skin that will heal spontaneously within a few weeks, thereby reducing the amount of skin that must be surgically grafted.
Abstract:
A method and apparatus is disclosed for the instant intraoperative detection and biopsy of metastatic cancer using fluorescence spectroscopy. A photosensitizing agent selectively retained by cancerous tissue is administered prior to surgery. A fiberoptic probe integrated with a biopsy device illuminates the examined tissue and causes fluorescence which is recorded by a spectrograph and plotted as a spectral curve. The intensity ratio (S1/S2) for the fluorescence from the photosensitizing agent (S1) and autofluorescence (S2) for the examined tissue is compared with the intensity ratio at the same wavelengths for primary tumor and normal tissue. Tissue that displays an intensity ratio different from that of normal tissue can immediately be analyzed for the depth of tumor involvement and then excised for histological examination using the biopsy device.
Abstract:
A medical monitor, and related method, determines a pre-existing physiological property of an organ of a patient by monitoring fluorescent light produced by constituents associated with the metabolic and structural condition of the organ. The monitor illuminates the organ with ultraviolet excitation light that induces some constituents of the organ to fluoresce, with the fluorescent light being monitored and processed to determine pre-existing physiological properties of the organ. A sensor monitors the return light, which includes fluorescent light produced by the fluorescent constituents of the organ, and generates first and second electrical signals indicative of the intensity of light at two wavelength. One wavelength is associated with the fluorescence of collagen, a constituent associated with organ's structural properties, and the other wavelength is a associated with the fluorescence of NADH, a constituent associated with the organ's metabolism. A processor then processes the first and second electrical signals to determine the localized pH of the organ. A fiber-optic waveguide is used to guide the excitation light from the laser light source to the organ and the return light from the organ to the sensor. In another aspect of the invention, the sensor generates a third electrical signal associated with the fluorescence of elastin, a constituent associated with the organ's structural properties. The processor processes the first, second and third electrical signals to determine the perfusion or oxygenation of the organ.