Abstract:
MQW devices, IC chips and methods may be used in semiconductor lithography patterning systems. An MQW device includes an array of pixels that have transmission elements and associated support circuits. The support circuits have preliminary memory cells and final memory cells. The final memory cells store transmittance values that control transmittances of the associated transmission elements. This way, exposure of a target with a lithography system for purposes of patterning the target may be performed through the transmission elements according to the controlled transmittances, while subsequent transmittance values are being received by the preliminary memory cells from memory banks. The exposure of the target therefore needs to pause for less time, in order to wait for the MQW device to be refreshed with the subsequent transmittance values. Accordingly the whole semiconductor lithography patterning system may operate faster and thus have more throughput.
Abstract:
Imaging systems, such as time-of-flight imaging systems, and methods with pixel sensitivity adjustments. An embodiment includes a method, comprising: for a plurality of pixels having a first output and a second output, measuring the first outputs and the second outputs in response to a demodulation signal; and adjusting the demodulation signal such that a combination of the first outputs is substantially similar to a combination of the second outputs.
Abstract:
In some embodiments, an imaging device includes a pixel array. At least one of the pixels includes a photodiode that can generate charges, and a select transistor that receives the charges in its bulk. When the select transistor is selected, a pixel current through it may depend on a number of the received charges, thus evidencing how much light it detected. A reset transistor may reset the voltage of the bulk.
Abstract:
A Dynamic Vision Sensor (DVS) where pixel pitch is reduced to increase spatial resolution. The DVS includes shared pixels that employ Time Division Multiplexing (TDM) for higher spatial resolution and better linear separation of pixel data. The pixel array in the DVS may consist of multiple N×N pixel clusters. The N×N pixels in each cluster share the same differentiator and the same comparator using TDM. The pixel pitch is reduced (and, hence, the spatial resolution is improved) by implementing multiple adjacent photodiodes/photoreceptors that share the same differentiator and comparator units using TDM. In the DVS, only one quarter of the whole pixel array may be in use at the same time. A global reset may be done periodically to switch from one quarter of pixels to the other for detection. Because of higher spatial resolution, applications such as gesture recognition or user recognition based on DVS output entail improved performance.
Abstract:
Imaging devices and methods detect ambient light level using array pixels. In one embodiment, an imaging device includes an array of imaging pixels that are configured to acquire an image, and an array of dark pixels. A controller may cause at least one of the imaging pixels and of the dark pixels to image concurrently. A monitoring circuit may measure a difference between currents drawn by the imaging pixel and the dark pixel during the concurrent imaging. An indication of ambient light level can be generated according to the difference. The indication can be used as desired, for example to manage the brightness of the display screen. As such, no separate sensors are required, apart from the imaging array that is already provided for imaging.
Abstract:
An image sensor includes a first array of pixels exhibiting a first sensitivity; a second array of pixels exhibiting a second sensitivity; wherein, the first array of pixels is electrically separated from the second array of pixels. Methods of use and devices using the image sensor are disclosed.
Abstract:
MQW devices, IC chips and methods may be used in semiconductor lithography patterning systems. An MQW device includes an array of pixels that have transmission elements and associated support circuits. The support circuits have preliminary memory cells and final memory cells. The final memory cells store transmittance values that control transmittances of the associated transmission elements. This way, exposure of a target with a lithography system for purposes of patterning the target may be performed through the transmission elements according to the controlled transmittances, while subsequent transmittance values are being received by the preliminary memory cells from memory banks. The exposure of the target therefore needs to pause for less time, in order to wait for the MQW device to be refreshed with the subsequent transmittance values. Accordingly the whole semiconductor lithography patterning system may operate faster and thus have more throughput.
Abstract:
An embodiment includes a system, comprising a first memory; a plurality of first circuits, wherein each first circuit is coupled to the memory; and includes a second circuit configured to generate a first output value in response to an input value received from the first memory; and an accumulator configured to receive the first output value and generate a second output value; and a controller coupled to the memory and the first circuits, and configured to determine the input values to be transmitted from the memory to the first circuits.
Abstract:
An imaging device has an array with pixels that can image an aspect of an object. In addition, pixels in the array can be used to perform motion detection or edge detection. A first and a second pixel can integrate light non-concurrently, and then their outputs may be compared. A difference in their outputs may indicate an edge in an imaging operation, and motion in a motion detection operation. The motion detection operation may be performed without needing the imaging device to have an additional modulated LED light source, and to spend the power to drive that source.