Abstract:
The present disclosure relates to a device-to-device (D2D) communication for direct communication between nodes in a wireless communication system, wherein an operation method of a terminal includes the steps of: generating sequences, which belong to an orthogonal sequence set, according to a sequence pattern corresponding to a priority of a link; and transmitting the sequences, as signals for measurement of a reception electric power of a counterpart terminal, through sub-blocks within a channel, wherein one sequence is transmitted through each of the sub-blocks.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). In particular, the present invention relates to an apparatus and method for position measurement in a wireless communication system. An operating method of a terminal in the wireless communication system includes transmitting a signal for requesting for positioning, and receiving positioning signals for the positioning of the terminal from a plurality of other terminals.
Abstract:
Disclosed are a method, communication scheme and a system thereof for converging an IoT technology and a 5G communication system for supporting a high data transmission rate beyond that of a 4G system. The method, communication scheme and a system can be applied to intelligent services (for example, services related to a smart home, smart building, smart city, smart car, connected car, health care, digital education, retail business, security, and safety) based on the 5G communication technology and the IoT-related technology. A method for allocating resources for D2D communication by a User Equipment (UE) includes: identifying a movement direction of the UE; selecting a resource pool mapped to the identified movement direction among resource pools allocated according to the movement direction; and performing D2D communication using the selected resource pool.
Abstract:
The present disclosure relates to a device-to-device (D2D) communication for direct communication between nodes in a wireless communication system, wherein an operation method of a terminal includes the steps of: generating sequences, which belong to an orthogonal sequence set, according to a sequence pattern corresponding to a priority of a link; and transmitting the sequences, as signals for measurement of a reception electric power of a counterpart terminal, through sub-blocks within a channel, wherein one sequence is transmitted through each of the sub-blocks.
Abstract:
The present invention relates not only to a fourth-generation (4G) communication system, such as long-term evolution (LTE), but also to a fifth-generation (5G) or pre-5G communication system to be provided to support a higher data transfer rate. The present invention provides a method for a first device in a communication system supporting a device-to-device (D2D) scheme, the method comprising the steps of: when existence of a second D2D device, of which the location information needs to be detected, has been detected, transmitting a discovery request message which requests activation of at least one of an urgent discovery operation and a location measurement operation; receiving a discovery response message to the discovery request message from at least one device including the second device; and transmitting, to the second device, information related to execution of the location measurement operation.
Abstract:
Disclosed are a method, communication scheme and a system thereof for converging an IoT technology and a 5G communication system for supporting a high data transmission rate beyond that of a 4G system. The method, communication scheme and a system can be applied to intelligent services (for example, services related to a smart home, smart building, smart city, smart car, connected car, health care, digital education, retail business, security, and safety) based on the 5G communication technology and the IoT-related technology. A method for allocating resources for D2D communication by a User Equipment (UE) includes: identifying a movement direction of the UE; selecting a resource pool mapped to the identified movement direction among resource pools allocated according to the movement direction; and performing D2D communication using the selected resource pool.
Abstract:
A method for operating a device in a wireless communication system supporting Device to Device (D2D) communication system includes receiving a reference signal from each of at least one transmitting device, estimating a frequency offset between the reference signals and a comparison reference signal corresponding to the reference signals, and adjusting a transmit frequency of a voltage controlled oscillator of the device using the estimated frequency offset estimation. An apparatus for compensating for a frequency offset of a device in a wireless communication system supporting Device to Device (D2D) communication system includes a frequency offset estimator configured to receive reference signals from each of at least one transmitting device, and estimating a frequency offset between the reference signals and a comparison reference signal corresponding to the reference signals, and a voltage controlled oscillator configured to adjust a transmit frequency using the estimated frequency offset.
Abstract:
A method for operating a device in a wireless communication system supporting Device to Device (D2D) communication system includes receiving a reference signal from each of at least one transmitting device, estimating a frequency offset between the reference signals and a comparison reference signal corresponding to the reference signals, and adjusting a transmit frequency of a voltage controlled oscillator of the device using the estimated frequency offset estimation. An apparatus for compensating for a frequency offset of a device in a wireless communication system supporting Device to Device (D2D) communication system includes a frequency offset estimator configured to receive reference signals from each of at least one transmitting device, and estimating a frequency offset between the reference signals and a comparison reference signal corresponding to the reference signals, and a voltage controlled oscillator configured to adjust a transmit frequency using the estimated frequency offset.