Abstract:
Embodiments herein provide a method for managing HARQ procedure for multiple numerologies multiplexing in a wireless communication network. The method includes transmitting, by a User Equipment (UE), capability parameters of the UE to a Base Station (BS). Further, the method includes receiving, by the UE, a plurality of HARQ configuration parameters corresponding to the capability parameters of the UE from the BS, and perfuming, by the UE, one of an individual HARQ process and a shared HARQ process based on the plurality of HARQ configuration parameters received from the BS.
Abstract:
A method for allocating resources in Device-to-Device (D2D) communication in a wireless network is provided. The method includes requesting, by a device, resource allocation from an enhanced Node B (eNB) and causing the device to be allocated, from the eNB, a Resource Block (RB) for transmitting one of D2D discovery and communication data and control information. The RB includes information about a location of the resource-allocated time or frequency.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as a long term evolution (LTE). A method for transmitting a device to device (D2D) discovery signal by a user equipment (UE) in a communication system supporting a D2D scheme is provided. The method includes determining transmission power for D2D discovery signal transmission, and transmitting a D2D discovery signal using the transmission power, wherein the transmission power is determined by considering a cell at which the D2D discovery signal is transmitted.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A base station and method thereof are provided for hybrid automatic retransmit request (HARQ) feedback in a wireless communication system. A method includes generating transmission beam information for transmitting hybrid automatic retransmit request (HARQ) feedback information for an uplink data packet received from a terminal; scheduling a HARQ feedback channel in a downlink subframe, based on the transmission beam information; and transmitting the HARQ feedback information, based on the HARQ feedback channel.
Abstract:
Provided is a distributed scheduling method and apparatus for resource allocation for Device-to-Device (D2D) communication. The method includes sending, by a Mobile Station (MS) including data to transmit, a first resource reservation message through at least one first slot among a plurality of slots constituting a resource reservation unit in a resource reservation channel; and when a second resource reservation message sent by another MS is not sensed in a slot with a higher priority than the first slot in the resource reservation unit, transmitting the data through a transmission resource unit corresponding to the resource reservation unit in a data transmission channel. The resource reservation channel corresponds to the transmission resource unit, and the plurality of slots has mutually cyclic priorities.
Abstract:
An apparatus is configured to perform a method for performing distributed scheduling by a reception device configuring a target link corresponding to one of a plurality of links in a network in which the plurality of links for device to device communication exist. The method includes adding up resource allocation demand amounts included in resource information broadcasted by a counterpart device configuring the target link and one or more adjacent transmission devices by a preset Resource Unit (RU), and adjusting self resource information in consideration of resource position information included in the broadcasted resource information and the added resource allocation demand amount and transmitting the adjusted self resource information to the counterpart transmission device.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). According to various embodiments, an electronic device over resource allocation of device to device (D2D) communication in a wireless communication system comprises at least one processor configured to generate D2D control information for the D2D communication, and at least one processor configured to transmit the D2D control information through symbols for at least one of a Physical Downlink Control CHannel (PDCCH), a Physical Uplink Shared CHannel (PUSCH), and Demodulation-Reference Signal (DM-RS).
Abstract:
Disclosed are a method, communication scheme and a system thereof for converging an IoT technology and a 5G communication system for supporting a high data transmission rate beyond that of a 4G system. The method, communication scheme and a system can be applied to intelligent services (for example, services related to a smart home, smart building, smart city, smart car, connected car, health care, digital education, retail business, security, and safety) based on the 5G communication technology and the IoT-related technology. A method for allocating resources for D2D communication by a User Equipment (UE) includes: identifying a movement direction of the UE; selecting a resource pool mapped to the identified movement direction among resource pools allocated according to the movement direction; and performing D2D communication using the selected resource pool.
Abstract:
A method for controlling a path between terminals in a wireless communication system includes measuring a channel quality of a direct path with the another terminal when receiving a request for measuring the channel quality of the direct path from a higher entity, transmitting a first message comprising a result of the measuring the channel quality to the higher entity, and, when receiving a second message to instruct to switch to the direct path from the higher entity, setting the direct path with the another terminal. another embodiments including a terminal and a network entity are also disclosed.
Abstract:
A link scheduling method in a system for performing Device-to-Device (D2D) communication includes periodically collecting information indicating whether to perform a medium access from at least one neighboring link determining at least one link expected to perform a medium access in a corresponding traffic slot among links with a higher priority than the terminal based on the collected information, and determining whether to perform the medium access of the terminal by considering only the at least one link expected to perform the medium access.