Abstract:
In some examples, a semiconductor device may comprise a semiconductor chip including a plurality of pixels, each pixel formed of a plurality of sub-pixels, such as a red sub-pixel, green sub-pixel and blue sub-pixel. Each sub-pixel may comprise a light emitting diode. A first signal line may connect to signal terminals of a first group sub-pixels (e.g., arranged in the same row), and a second signal line may connect to common terminals of a second group of sub-pixels (e.g., arranged in the same column). The number of chip pads may thus be reduced to provide increased design flexibility in location and/or allowing an increase in chip pad size. In some examples, a light transmissive material may be formed in openings of a semiconductor growth substrate on which light emitting cells of the sub-pixels were grown. The light transmissive material of some of the sub-pixels may comprise a wavelength conversion material and/or filter. Exemplary display panels and methods of manufacturing semiconductor devices and display panels are also disclosed.
Abstract:
A light emitting device package may include: a light emitting structure including a plurality of light emitting regions configured to emit light, respectively; a plurality of light adjusting layers formed above the light emitting regions to change characteristics of the light emitted from the light emitting regions, respectively; a plurality of electrodes configured to control the light emitting regions to emit the light, respectively; and an isolation insulating layer disposed between the light emitting regions to insulate the light emitting regions from one another, the isolation insulating layer forming a continuous structure with respect to the light emitting regions.
Abstract:
An LED light source module includes a light emitting stacked body, and a first through electrode structure and a second through electrode structure passing through a portion of the light emitting stacked body. The light emitting stacked body includes a base insulating layer, light emitting layers sequentially stacked on the base insulating layer, each of the light emitting layers including a first conductivity-type semiconductor layer, a second conductivity-type semiconductor layer, and an active layer disposed between the first conductivity-type semiconductor layer and the second conductivity-type semiconductor layer, and an interlayer insulating layer disposed between the light emitting layers. The first through electrode structure is connected to the first conductivity-type semiconductor layer of each of the light emitting layers, and the second through electrode structure is connected to any one or any combination of the second conductivity-type semiconductor layer of each of the light emitting layers.
Abstract:
A nanostructure semiconductor light emitting device includes a base layer, an insulating layer, and a plurality of light emitting nanostructures. The base layer includes a first conductivity type semiconductor. The insulating layer is disposed on the base layer and has a plurality of openings through which regions of the base layer are exposed. The light emitting nanostructures are respectively disposed on the exposed regions of the base layer and include a plurality of nanocores having a first conductivity type semiconductor and having side surfaces provided as the same crystal planes. The light emitting nanostructures include an active layer and a second conductivity type semiconductor layer sequentially disposed on surfaces of the nanocores. Upper surfaces of the nanocores are provided as portions of upper surfaces of the light emitting nanostructures, and the upper surfaces of the light emitting nanostructures are substantially planar with each other.
Abstract:
A light source module includes a circuit board having a plurality of chip mounting regions, the plurality of chip mounting regions respectively having at least one connection pad; at least one alignment component respectively disposed on the plurality of chip mounting regions, and having a convex or concave shape; and a plurality of LED chips respectively mounted on the plurality of chip mounting regions, respectively having at least one electrode electrically connected to the at least one connection pad, and respectively coupled to the at least one alignment component.
Abstract:
A nanostructure semiconductor light emitting device may include a base layer having first and second regions and formed of a first conductivity-type semiconductor material; a plurality of light emitting nanostructures disposed on the base layer, each of which including a nanocore formed of a first conductivity-type semiconductor material, and an active layer and a second conductivity-type semiconductor layer sequentially disposed on the nanocore; a contact electrode disposed on the light emitting nanostructures to be connected to the second conductivity-type semiconductor layer; a first electrode connected to the base layer; and a second electrode covering a portion of the contact electrode disposed on at least one of light emitting nanostructures disposed in the second region among the plurality of light emitting nanostructures, wherein light emitting nanostructures disposed in the second region and light emitting nanostructures disposed in the first region among the plurality of light emitting nanostructures have different shapes.
Abstract:
A nanostructure semiconductor light emitting device includes a base layer, an insulating layer, and a plurality of light emitting nanostructures. The base layer includes a first conductivity type semiconductor. The insulating layer is disposed on the base layer and has a plurality of openings through which regions of the base layer are exposed. The light emitting nanostructures are respectively disposed on the exposed regions of the base layer and include a plurality of nanocores having a first conductivity type semiconductor and having side surfaces provided as the same crystal planes. The light emitting nanostructures include an active layer and a second conductivity type semiconductor layer sequentially disposed on surfaces of the nanocores. Upper surfaces of the nanocores are provided as portions of upper surfaces of the light emitting nanostructures, and the upper surfaces of the light emitting nanostructures are substantially planar with each other.
Abstract:
In some examples, a semiconductor device may comprise a semiconductor chip including a plurality of pixels, each pixel formed of a plurality of sub-pixels, such as a red sub-pixel, green sub-pixel and blue sub-pixel. Each sub-pixel may comprise a light emitting diode. A first signal line may connect to signal terminals of a first group sub-pixels (e.g., arranged in the same row), and a second signal line may connect to common terminals of a second group of sub-pixels (e.g., arranged in the same column). The number of chip pads may thus be reduced to provide increased design flexibility in location and/or allowing an increase in chip pad size. In some examples, a light transmissive material may be formed in openings of a semiconductor growth substrate on which light emitting cells of the sub-pixels were grown. The light transmissive material of some of the sub-pixels may comprise a wavelength conversion material and/or filter. Exemplary display panels and methods of manufacturing semiconductor devices and display panels are also disclosed.
Abstract:
A display apparatus may include a light source module that may include a substrate having a plurality of chip mounting areas of which each has a connection pad disposed therein, and a plurality of semiconductor light emitting devices electrically coupled to separate connection pads. The display apparatus may include a black matrix on the substrate and having a plurality of holes corresponding to the pattern of chip mounting areas. The semiconductor light emitting devices may be in separate, respective holes to be electrically coupled to separate connection pads. The display apparatus may include unit pixels, where each unit pixel includes multiple adjacent semiconductor light emitting devices. The semiconductor light emitting devices may be removably coupled to separate connection pads, and a semiconductor light emitting device may be interchangeably swapped from a connection pad.
Abstract:
There is provided a display device including a plurality of pixels. Each of the plurality of pixels may include a plurality of switching devices, at least one capacitor, and a semiconductor light-emitting device. The display device may further include a driving circuit configured to apply currents to the semiconductor light-emitting device through the plurality of switching devices and at least one capacitor. The semiconductor light-emitting device may emit red light, green light, and blue light through the currents applied by the driving circuit.