Abstract:
A pixel and pixel array for use in an image sensor are provided. The image sensor includes floating sensing nodes symmetrically arranged with respect to a photodiode in each pixel.
Abstract:
A backside-illuminated active pixel sensor array in which crosstalk between adjacent pixels is prevented, a method of manufacturing the backside-illuminated active pixel sensor array, and a backside-illuminated image sensor including the backside-illuminated active pixel sensor array are provided. The backside-illuminated active pixel sensor array includes a semiconductor substrate of a first conductive type that comprises a front surface and a rear surface, light-receiving devices for generating charges in response to light incident via the rear surface, and one or more pixel isolating layers for forming boundaries between pixels by being disposed between the adjacent light-receiving devices, a wiring layer disposed on the front surface of the semiconductor substrate, and a light filter layer disposed on the rear surface of the semiconductor substrate, wherein a thickness of the one or more pixel isolating layers decreases from a point in the semiconductor substrate toward the rear surface.
Abstract:
A backside-illuminated active pixel sensor array in which crosstalk between adjacent pixels is prevented, a method of manufacturing the backside-illuminated active pixel sensor array, and a backside-illuminated image sensor including the backside-illuminated active pixel sensor array are provided. The backside-illuminated active pixel sensor array includes a semiconductor substrate of a first conductive type that comprises a front surface and a rear surface, light-receiving devices for generating charges in response to light incident via the rear surface, and one or more pixel isolating layers for forming boundaries between pixels by being disposed between the adjacent light-receiving devices, a wiring layer disposed on the front surface of the semiconductor substrate, and a light filter layer disposed on the rear surface of the semiconductor substrate, wherein a thickness of the one or more pixel isolating layers decreases from a point in the semiconductor substrate toward the rear surface.
Abstract:
An image sensor includes a first photo detecting device disposed in a central region of a pixel array portion and a second photo detecting device disposed in an edge of the pixel array portion. The second photo detecting device has a full well capacity which is less than a full well capacity of the first photo detecting device. An imaging device includes the image sensor and an image signal process. The image signal processor compensates for a lens shading effect and a difference between the full well capacity of the first photo detecting device and the full well capacity of the second photo detecting device.
Abstract:
An image sensor includes a substrate comprising a first face and a second surface which faces the first surface and on which light is incident, a semiconductor photoelectric conversion device on the substrate, a gate electrode located between the first surface of the substrate and the semiconductor photoelectric conversion device and extending in a first direction perpendicular to the first surface, and an organic photoelectric conversion device stacked on the second surface of the substrate.
Abstract:
An image sensor includes a first photo detecting device disposed in a central region of a pixel array portion and a second photo detecting device disposed in an edge of the pixel array portion. The second photo detecting device has a full well capacity which is less than a full well capacity of the first photo detecting device. An imaging device includes the image sensor and an image signal process. The image signal processor compensates for a lens shading effect and a difference between the full well capacity of the first photo detecting device and the full well capacity of the second photo detecting device.