Abstract:
In a method of forming a wiring structure, a first mask having a first opening including a first portion extending in a second direction and a second portion extending in a first direction is formed. A second mask including a second opening overlapping the first portion of the first opening and third openings each overlapping the second portion of the first opening is designed. The second mask is fabricated to include a fourth opening by enlarging the second opening. The fourth opening overlaps a boundary between the first and second portions of the first opening. An insulating interlayer is etched using the first and second masks to form first and second via holes corresponding to the fourth and third openings, and a trench corresponding to the first opening. First and second vias and a wiring are formed to fill the first and second via holes and the trench.
Abstract:
In a method of forming a wiring structure, a first mask having a first opening including a first portion extending in a second direction and a second portion extending in a first direction is formed. A second mask including a second opening overlapping the first portion of the first opening and third openings each overlapping the second portion of the first opening is designed. The second mask is fabricated to include a fourth opening by enlarging the second opening. The fourth opening overlaps a boundary between the first and second portions of the first opening. An insulating interlayer is etched using the first and second masks to form first and second via holes corresponding to the fourth and third openings, and a trench corresponding to the first opening. First and second vias and a wiring are formed to fill the first and second via holes and the trench.
Abstract:
A semiconductor device includes a substrate having a first region, a second region, a first buffer region, and a second buffer region. A plurality of conductive lines is disposed on the first region of the substrate. An inductor is disposed on the second region of the substrate, and a dummy pattern is disposed on the first buffer region of the substrate. The first buffer region is provided between the first region and the second region. The second buffer region is provided between the first buffer region and the second region.
Abstract:
A semiconductor device includes a substrate having a first region, a second region, a first buffer region, and a second buffer region. A plurality of conductive lines is disposed on the first region of the substrate. An inductor is disposed on the second region of the substrate, and a dummy pattern is disposed on the first buffer region of the substrate. The first buffer region is provided between the first region and the second region. The second buffer region is provided between the first buffer region and the second region.
Abstract:
A semiconductor device, comprising: a substrate which includes an active circuit region, and a boundary region surrounding the active circuit region, the boundary region including an edge portion of the substrate; a first lower conductive pattern disposed on the substrate of the boundary region; and a first upper conductive pattern connected to the first lower conductive pattern over the first lower conductive pattern, wherein the first upper conductive pattern includes a first portion having a first thickness, a second portion having a second thickness greater than the first thickness, and a third portion having a third thickness greater than the second thickness, and the third portion of the first upper conductive pattern is connected to the first lower conductive pattern, is provided.
Abstract:
A semiconductor device includes a first electrode which includes a first main portion, and a first extension that extends from the first main portion, and a dielectric layer which surrounds a sidewall and a bottom surface of the first main portion, wherein the first main portion includes a first portion having a first depth, and a second portion having a second depth deeper than the first depth.