Abstract:
A wireless power reception apparatus includes: a first electrode including a coil shape; a second electrode including the coil shape; an electrode capacitor connected between the first electrode and the second electrode; an electrode signal transceiver connected to the first electrode and the second electrode; a power receiver connected to the first electrode and the second electrode, separately from the electrode signal transceiver; a resonant capacitor; and first capacitor and a second capacitor configured to connect a conducting line between the first electrode and the power receiver and a conducting line between the second electrode and the power receiver, wherein the first electrode and the second electrode are wound in the same direction.
Abstract:
A communication device includes: a coil disposed around a core area of the communication device; a processor disposed in the core area and configured to establish communication with an external device through the coil; and a discrete element disposed on the coil and connected to the processor through a via.
Abstract:
A wireless device including a coil having loops, a first reception circuit, and a second reception circuit. The first reception circuit is configured to receive a signal of a first frequency band through a portion of the loops and the second reception circuit configured to inhibit the signal of the first frequency band through the loops.
Abstract:
An exercise feedback provision apparatus includes an acquirer configured to acquire exercise intensity information including either one or both of user biometric information and user movement information, and a controller configured to verify whether the exercise intensity information is in a predetermined range, and generate a control signal based on a result of the verifying. The apparatus further includes a feedback provider configured to output a tactile feedback based on a pattern corresponding to the control signal.
Abstract:
A quasi-isotropic antenna includes: a feeder; a loop antenna configured to radiate a first radio wave based on a feeding from the feeder; and a dipole antenna adjacent to the loop antenna, and configured to radiate a second radio wave by resonating based on a resonant-coupling with the loop antenna, wherein a radiation pattern of the first radio wave is orthogonal to a radiation pattern of the second radio wave.
Abstract:
Disclosed is a near-field communication (NFC) system that includes an NFC supporting apparatus. The NFC supporting apparatus includes a dual coil and a first switch. The dual coil includes an NFC band coil and a radio frequency (RF) band coil. An RF amplitude modulation signal is generated at the RF band coil in response to a transmission from an implantable device. The first switch is configured to switch the NFC band coil based on the RF amplitude modulation signal. The NFC band coil is configured to generate an NFC amplitude modulation signal at an NFC band coil of an NFC reader in response to the first switch.
Abstract:
A wireless power transmission method includes operating at least one source resonator among a plurality of source resonators; detecting a waveform while the at least one source resonator resonates; determining, based on the detected waveform, a source resonator for wireless power transmission; and wirelessly transmitting power to a target resonator using the determined source resonator.
Abstract:
A wireless power reception apparatus includes a reception (RX) resonator configured to form a resonance coupling with a first resonance period associated with an envelope of a power to receive the power from a transmission (TX) resonator; a switch controller configured to generate, at intervals of the first resonance period, a control signal to deactivate the RX resonator at an off timing corresponding to a time instant at which a maximum energy is stored in an inductor of the RX resonator; and a switch configured to deactivate the RX resonator in response to the control signal.
Abstract:
There is disclosed an electrode including a substrate, a conductive material layer on the substrate, an insulating layer comprising an electrode layer on the conductive material layer, and a groove region in at least a portion of the insulating layer, and the electrode layer is extended into the groove region, and the conductive material layer is exposed to the groove region.
Abstract:
An exercise feedback provision apparatus includes an acquirer configured to acquire exercise intensity information including either one or both of user biometric information and user movement information, and a controller configured to verify whether the exercise intensity information is in a predetermined range, and generate a control signal based on a result of the verifying. The apparatus further includes a feedback provider configured to output a tactile feedback based on a pattern corresponding to the control signal.