Abstract:
A multi channel semiconductor device is disclosed. The multi channel device may include a substrate, a first die on the substrate and having a first channel to function as a first chip; and a second die on the substrate and having a second channel different from the first channel to function as a second chip and including the same storage capacity and physical size as the first die. An internal interface is disposed between the first and second dies. The internal interface is configured to transmit information for controlling internal operations of the first and second dies and first applied to a first recipient die of the first and second dies to the other die.
Abstract:
An operation method of a semiconductor device is disclosed. The semiconductor device includes separate first and second dies in a package and receives first types of signals through first and second respective channels independent of each other and corresponding to the first and second respective dies. The method includes a step in which when information for controlling internal operations of the first and second dies is first applied to the first die through a first pad, the first die performs the internal operation and also transmits the information to the second die through an internal interface connecting the first die and the second die, and a step in which when the information is transmitted to the second die, the second die performs the internal operation.
Abstract:
An operation method of a semiconductor device is disclosed. The semiconductor device includes separate first and second dies in a package and receives first types of signals through first and second respective channels independent of each other and corresponding to the first and second respective dies. The method includes a step in which when information for controlling internal operations of the first and second dies is first applied to the first die through a first pad, the first die performs the internal operation and also transmits the information to the second die through an internal interface connecting the first die and the second die, and a step in which when the information is transmitted to the second die, the second die performs the internal operation.
Abstract:
A multi channel semiconductor device is disclosed. The multi channel device may include a substrate, a first die on the substrate and having a first channel to function as a first chip; and a second die on the substrate and having a second channel different from the first channel to function as a second chip and including the same storage capacity and physical size as the first die. An internal interface is disposed between the first and second dies. The internal interface is configured to transmit information for controlling internal operations of the first and second dies and first applied to a first recipient die of the first and second dies to the other die.
Abstract:
A semiconductor memory device is provided which includes a dynamic random access memory including a memory cell array formed of dynamic random access memory cells; a cache memory formed at the same chip as the dynamic random access memory and configured to communicate with a processor or an external device; and a controller connected with the dynamic random access memory and the cache memory in the same chip and configured to control a dynamic random access function and a cache function.