Abstract:
An electrolyte and a lithium secondary battery including the same. The electrolyte includes a lithium salt; an organic solvent; and at least one siloxane compound represented by Formula 1 or Formula 2, wherein an amount of the at least one siloxane compound is about 0.05 wt % to about 20 wt % based on a total weight of the electrolyte. In Formulae 1 and 2, group substituents and number indices are as defined in the specification.
Abstract:
A nonaqueous electrolyte for a lithium secondary battery, the nonaqueous electrolyte including: a fluorine-containing lithium salt, an organic solvent, and an organosilicon compound represented by Formula 1: wherein, in Formula 1, R1 to R3 may be each independently a C1-C10 alkyl group. Also a lithium secondary battery including the nonaqueous electrolyte.
Abstract:
Provided are methods of fabricating a semiconductor device and semiconductor devices fabricated thereby. In the methods, dummy recess regions may be formed between cell recess regions and a peripheral circuit region. Due to the presence of the dummy recess regions, it may be possible to reduce a concentration gradient of a suppressor contained in a plating solution near the dummy pattern region, to make the concentration of the suppressor more uniform in the cell pattern region, and to supply an electric current more effectively to the cell pattern region. As a result, a plating layer can be more uniformly formed in the cell pattern region, without void formation therein.
Abstract:
An electrolyte and a lithium secondary battery including the same. The electrolyte includes a lithium salt; an organic solvent; and at least one siloxane compound represented by Formula 1 or Formula 2, wherein an amount of the at least one siloxane compound is about 0.05 wt % to about 20 wt % based on a total weight of the electrolyte.
In Formulae 1 and 2, group substituents and number indices are as defined in the specification.
Abstract:
A lithium secondary battery includes: a positive electrode; an negative electrode; and an electrolyte between the positive electrode and the negative electrode, wherein the positive electrode includes a positive active material represented by Formula 1, the electrolyte includes a lithium salt, a non-aqueous solvent, and a trialkoxyalkylsilane compound represented by Formula 2, and an amount of the trialkoxyalkylsilane compound in the electrolyte is about 0.1 weight percent to about 5 weight percent based on a total weight of the electrolyte: wherein, in Formula 1 and Formula 2, x, y, z, M, A, R1 to R3, and Ar are as defined as the specification.
Abstract:
An organic electrolyte solution includes a lithium salt; an organic solvent; and a fluorine-containing phosphate compound represented by Formula 1: wherein, in Formula 1, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, and R15 are each independently a hydrogen atom, a fluorine atom, a C1-C5 alkyl group substituted or not substituted with a halogen atom, a C4-C10 cycloalkyl group substituted or not substituted with a halogen atom, a C6-C10 aryl group substituted or not substituted with a halogen atom, a C2-C10 heteroaryl group substituted or not substituted with a halogen atom, or a C2-C10 alkenyl group substituted or not substituted with a halogen atom, at least one of R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, or R15 is a fluorine atom, and at least one phenyl group does not have a fluorine atom.
Abstract:
An electrolyte for a lithium secondary battery including a lithium salt, a non-aqueous organic solvent, and a pyrrolidine derivative represented by Formula 1, wherein, in Formula 1, X is hydrogen, a formyl group or a salt thereof, a carboxyl group or a salt thereof, a C1-C20 alkyl group, a C1-C20 hydroxyalkyl group, a C1-C20 aminoalkyl group, a C1-C20 thioalkyl group, or a C1-C20 cyanoalkyl group, and R1 to R4 are each independently hydrogen, deuterium, a halogen atom, a hydroxyl group, a thio group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a formyl group or a salt thereof, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 hydroxyalkyl group, a C2-C20 heteroaryl group, or a C6-C20 aryl group.
Abstract:
Provided are methods of fabricating a semiconductor device and semiconductor devices fabricated thereby. In the methods, dummy recess regions may be formed between cell recess regions and a peripheral circuit region. Due to the presence of the dummy recess regions, it may be possible to reduce a concentration gradient of a suppressor contained in a plating solution near the dummy pattern region, to make the concentration of the suppressor more uniform in the cell pattern region, and to supply an electric current more effectively to the cell pattern region. As a result, a plating layer can be more uniformly formed in the cell pattern region, without void formation therein.
Abstract:
A compound is represented by Chemical Formula 1. In Chemical Formula 1, R1 to R4, R11a to R14c, and n are the same as defined in the detailed description.
Abstract:
Disclosed are an infrared absorption composition, and a photoelectric device, an organic sensor, and an electronic device including the same. The infrared absorption composition includes a p-type semiconductor compound represented by Chemical Formula 1 and an n-type semiconductor compound. The n-type semiconductor compound includes a compound represented by Chemical Formula 2A, a compound represented by Chemical Formula 2B, a compound represented by Chemical Formula 2C, a fullerene derivative, or a combination thereof. The p-type semiconductor compound and the n-type semiconductor compound provide a bulk heterojunction (BHJ) structure.