Abstract:
A light emitting device package and a method of manufacturing the light emitting device package are provided. The light emitting package includes a light emitting stack including a first conductivity-type semiconductor layer, an active layer, a second conductivity-type semiconductor layer sequentially stacked, and having a first surface provided by the first conductivity-type semiconductor layer and a second surface provided by the second conductivity-type semiconductor layer and opposing the first surface; a first electrode structure disposed on a portion of the first surface and connected to the first conductivity-type semiconductor layer; a sealing portion disposed adjacent to the light emitting stack; an insulating layer disposed between the light emitting stack and the sealing portion; and a first metal pad disposed on the second surface and passing through the insulating layer at a side of the light emitting stack to connect to the first electrode structure.
Abstract:
Disclosed herein is a quantum dot phosphor for light emitting diodes, which includes quantum dots and a solid substrate on which the quantum dots are supported. Also, a method of preparing the quantum dot phosphor is provided. Since the quantum dot phosphor of the current invention is composed of the quantum dots supported on the solid substrate, the quantum dots do not aggregate when dispensing a paste obtained by mixing the quantum dots with a paste resin for use in packaging of a light emitting diode. Thereby, a light emitting diode able to maintain excellent light emitting efficiency can be manufactured.
Abstract:
A light emitting diode (LED) package includes a package board having a first surface having a plurality of chip mounting regions and a second surface opposing the first surface, and including a plurality of first and second through electrodes disposed in the plurality of chip mounting regions, a plurality of LED chips disposed in the plurality of chip mounting regions of the first surface of the package board and each having one surface on which first and second electrodes are disposed, wherein the first and second electrodes are connected to the first and second through electrodes positioned in the chip mounting regions, and a connection electrode disposed on at least one of the first surface and the second surface of the package board, and connecting the first and second through electrodes.
Abstract:
Disclosed herein is a quantum dot phosphor for light emitting diodes, which includes quantum dots and a solid substrate on which the quantum dots are supported. Also, a method of preparing the quantum dot phosphor is provided. Since the quantum dot phosphor of the current invention is composed of the quantum dots supported on the solid substrate, the quantum dots do not aggregate when dispensing a paste obtained by mixing the quantum dots with a paste resin for use in packaging of a light emitting diode. Thereby, a light emitting diode able to maintain excellent light emitting efficiency can be manufactured.
Abstract:
A method of manufacturing a substrate for mounting an electronic device, includes forming at least one through-hole in a plate-shaped substrate body in a thickness direction thereof. An electrode substrate having at least one core on an upper surface thereof is formed such that the at least one core corresponds to the at least one through-hole. The electrode substrate is coupled to the substrate body by inserting the at least one core into the at least one through-hole. A portion of the coupled electrode substrate is removed except for the at least one core.
Abstract:
A semiconductor light emitting device package includes a light emitting structure having a first conductive semiconductor layer, an active layer, a second conductive semiconductor layer, a first surface, and a second surface, a first electrode and a second electrode disposed on the second surface of the light emitting structure; an insulating layer, a first metal pad and a second metal pad disposed on the insulating layer, and each having a surface with a first fine uneven pattern so as to have a first surface roughness, a first bonding pad and a second bonding pad disposed on the first metal pad and the second metal pad, respectively, and each having a surface with a second fine uneven pattern so as to have a second surface roughness, and an encapsulant encapsulating the first bonding pad, the second bonding pad, the first metal pad, and the second metal pad.
Abstract:
Disclosed herein is a quantum dot phosphor for light emitting diodes, which includes quantum dots and a solid substrate on which the quantum dots are supported. Also, a method of preparing the quantum dot phosphor is provided. Since the quantum dot phosphor of the current invention is composed of the quantum dots supported on the solid substrate, the quantum dots do not aggregate when dispensing a paste obtained by mixing the quantum dots with a paste resin for use in packaging of a light emitting diode. Thereby, a light emitting diode able to maintain excellent light emitting efficiency can be manufactured.