Abstract:
Semiconductor devices having a silicon-germanium channel layer and methods of forming the semiconductor devices are provided. The methods may include forming a silicon-germanium channel layer on a substrate in a peripheral circuit region and sequentially forming a first insulating layer and a second insulating layer on the silicon-germanium channel layer. The methods may also include forming a conductive layer on the substrate, which includes a cell array region and the peripheral circuit region, and patterning the conductive layer to form a conductive line in the cell array region and a gate electrode in the peripheral circuit region. The first insulating layer may be formed at a first temperature and the second insulating layer may be formed at a second temperature higher than the first temperature.
Abstract:
A semiconductor device and method of forming a semiconductor device is disclosed. The method includes forming a first ion-implanted layer having an amorphous state in a substrate; forming an impurity region of a first conductive type in the substrate; forming a semiconductor pattern on the substrate; forming a first doped region of the first conductive type in the semiconductor pattern; and forming a second doped region of a second conductive type contrary to the first conductive type in the semiconductor pattern. The first ion-implanted layer is formed by implanting carbons ions or germanium ions in the substrate.
Abstract:
Semiconductor devices, and methods of manufacturing the same, include a field region in a semiconductor substrate to define an active region. An interlayer insulating layer is on the semiconductor substrate. A semiconductor pattern is within a hole vertically extending through the interlayer insulating layer. The semiconductor pattern is in contact with the active region. A barrier region is between the semiconductor pattern and the interlayer insulating layer. The barrier region includes a first buffer dielectric material and a barrier dielectric material. The first buffer dielectric material is between the barrier dielectric material and the semiconductor pattern, and the barrier dielectric material is spaced apart from both the semiconductor pattern and the active region.