Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A terminal and method of the terminal in a wireless communication system are provided. The terminal includes at least one transceiver and at least one processor operatively connected to the at least one transceiver. The at least one processor is configured to acquire synchronization information of a first beam which is a serving beam, update the synchronization information based on the first beam or at least one second beam, determine at least one channel quality of the at least one second beam based on the updated synchronization information, and update the serving beam based on the at least one channel quality.
Abstract:
According to an embodiment of the present disclosure, a terminal may store a time correction value acquired from an RA response message during an RRC layer connection to a base station, receive, from the base station, an uplink resource allocation message including an uplink resource allocated to the terminal, after the RRC layer connection to the base station is released, and when an RRC layer connection to the base station is determined, establish the RRC layer connection to the base station without transmitting an RA preamble message, on the basis of the stored time correction value and the allocated uplink resource.
Abstract:
Disclosed is a fifth generation (5G) or pre-5G communication system for supporting a data transmission rate higher than that of a fourth generation (4G) communication system such as long term evolution (LTE). The purpose of the disclosure is to detect beam misalignment in a wireless communication system, and a terminal operation method comprises the steps of: receiving multiple reference signals for a first period; receiving multiple reference signals for a second period; and determining whether a beam is misaligned, on the basis of a first measurement value set for the multiple reference signals received for the first period and a second measurement value set for the multiple reference signals received for the second period. The study has been performed under the support of the “Government-wide Giga KOREA Business” of the Ministry of Science, ICT and Future Planning.
Abstract:
The disclosure relates to a wireless communication device and a method for controlling the same and, particularly, to a wireless communication device capable of communicating in different frequency bands, and a method for controlling the same.A method according to an embodiment of the disclosure corresponds to a method for controlling a wireless communication device having a wireless communication unit in accordance with each of a plurality of wireless communication standards. The method may comprise the steps of: receiving a first control signal from a first network by a first communication processor which communicates in a first wireless standard mode; controlling, by the first communication processor, power of a second communication processor of a second wireless standard mode to be turned on when the first control signal includes system control information of the second wireless standard mode; transferring, by the first communication processor, control information to be used in a system of the second wireless standard mode to the second communication processor through a data communication interface when data received from a system of the first wireless standard mode includes the control information to be used in the system of the second wireless standard mode; and accessing and communicating with the system of the second wireless standard mode by the second communication processor.The present research has been conducted with the support of the “Cross-Department Giga KOREA Project” of the Ministry of Science, ICT and Future Planning.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present disclosure relates to an apparatus and a method for wireless communication. The method may include: measuring beam pairs using signals transmitted from another apparatus using a plurality of carriers; determining a beam pair for the plurality of carriers based on measurement values for the beam pairs; and transmitting information indicating a transmit beam of the beam pair, to the other apparatus.
Abstract:
A memory module may include a module substrate having a first surface and a second surface opposite to the first surface, the module substrate extending in a first direction; a plurality of electronic devices mounted on the first surface of the module substrate; a heat sink thermally coupled with the first surface of the module substrate, the heat sink including a base plate on the plurality of electronic devices and a plurality of heat dissipating fins on the base plate to be spaced apart from each other along the first direction, each of the plurality of heat dissipating fins extending in a second direction different from the first direction; and a plurality of adsorption work-pads respectively on a plurality of a central heat dissipating fins among the plurality of heat dissipating fins on a central region of the base plate, each of the plurality of adsorption work-pads having a hinge portion secured to an upper surface of the central heat dissipating fins and a folding portion extending from the hinge portion in the first direction and foldable by a certain angle relative to the hinge portion.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). According to various embodiments, a device of a terminal, in a wireless communication system, can comprise at least one processor and at least one transceiver operatively coupled to the at least one processor. The at least one transceiver configured to receive, from a base station, a first signal transmitted using a first beam of the base station and including system information and receive, from the base station, a second signal transmitted using a second beam of the base station and including the system information, and the at least one processor is configured to decode the second signal in combination with the first signal, thereby enabling the system information to be acquired.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). According to various embodiments of the disclosure, an apparatus of a terminal in a wireless communication system is provided. The apparatus includes at least one transceiver, and at least one processor configured to be operatively connected to the at least one transceiver, wherein the at least one processor may be configured to: obtain first synchronization of a first carrier that is in synchronization, determine second synchronization of a second carrier that is out of synchronization based on the first synchronization, and perform communication based on the second synchronization.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system for supporting a higher data transfer rate beyond a 4G communication system such as LTD. A method of a terminal connected to another base station (BS) for a second communication system in a wireless environment, the method comprising receiving, via the another BS from a BS for the first communication system, a radio resource control (RRC) connection reconfiguration message comprising information regarding a first key, generating a secure key for a security of the first communication system based on the first key, an identifier (ID) for indicating an algorithm for applying to the first key, a distinguisher for indicating a function of the algorithm indicated by the ID, and transmitting, to the BS, a signal based on the generated secure key.
Abstract:
Various embodiments of the present disclosure provide an electronic device and a method of performing wireless communication using beamforming provided. The electronic device for performing wireless communication using beamforming includes: a communication unit for communicating signals with a correspondent node; a memory for storing a beamforming setup table; and a controller for: identifying identification information regarding the correspondent node based on at least one of schedule information, a reception packet and a transmission packet; identifying beamforming setup information corresponding to the identification information identified regarding the correspondent node, from the beamforming setup table; and establishing a beamforming link with the correspondent node based on the beamforming setup information, to communicate data via the link. The disclosure is not limited to the embodiments. The embodiments can be modified to other examples.