Abstract:
An LED apparatus is provided. The LED apparatus includes a plurality of substrate layers, each substrate layer corresponding to one of a plurality of sub-pixels of a pixel; a heat sink plate provided on a first side of each substrate layer, the heat sink plate including a patterned area provided between adjacent substrate layers of the plurality of substrates layers; a fluorescence provided on the heat sink plate overlapping at least a portion of one of the plurality of substrate layers; and a plurality of light emitting diodes, each light emitting diode formed on a second side opposite to the first side of each substrate layer.
Abstract:
A display apparatus is disclosed. The display apparatus includes: a transparent display, a scanner comprising a lens array and attached to the transparent display and a controller configured to control the scanner to scan an object viewed through the transparent display using the lens array being slid from a side of the transparent display to another side opposite to the side, and control the transparent display to display information in response to the scanning of the object.
Abstract:
A control method of a display apparatus including a panel configured to include red (R), green (G), and white (W) subpixels, and a backlight configured to provide the panel with backlight using at least one of a white light source and a blue light source, including: converting image data into R, G, and blue (B) subframe data; turning on the R, G, and W subpixels according to the R, G, and B subframe data; and turning on the W subpixel, setting a brightness of the white light source to a brightness value of the R, G, and B subframe data, providing the panel with white light at the set brightness, turning on subpixels corresponding to remaining subframe data, setting at least one of the brightness of the white light source and a brightness of the blue light source, and providing the panel with light at the set brightnesses, is provided.
Abstract:
A light emitting diode (LED) apparatus is provided. The LED apparatus includes: an LED layer including a plurality of LEDs corresponding to a plurality of sub-pixels; a phosphor layer which is stacked on a top of the LED layer and includes a phosphor corresponding to at least a part of the plurality of sub-pixels; and a filter layer which is stacked on a top of the phosphor layer and includes a plurality of color filters corresponding to the plurality of sub-pixels, and each of the plurality of color filters includes a plurality of absorption films which are spaced from one another at predetermined intervals to absorb external light.
Abstract:
A display apparatus includes a display panel including pixels arranged at an intersection of data lines and gate lines, a source driver IC configured to be disposed on one side surface of the display panel to apply a data voltage to the data lines, a gate driver IC configured to be disposed on any one of two side surfaces which are adjacent to the one side surface of the display panel to apply a gate driving voltage to the gate lines, and a controller configured to receive feedback on a gate driving voltage applied to at least one pixel, detect a distortion of the gate driving voltage applied to the pixel based on the feedback, adjust a level of the gate driving voltage applied to the gate lines to compensate for the distortion of the gate driving voltage, and apply the adjusted gate driving voltage to the gate lines.
Abstract:
A display module is provided including a pixel region having a plurality of pixels and a black matrix arranged outside the pixel region. Each of the pixels is separated from adjacent pixels by a first interval, a left distance from the left edge to a first one of the plurality of pixels plus a right distance from a second one of the plurality of pixels to the right edge is a first distance, and a bottom distance from the bottom edge to a third one of the plurality of pixels plus a top distance from a fourth one of the plurality of pixels to the top edge is the first distance.
Abstract:
A display apparatus is provided. The display apparatus includes: a transparent display; a scanner configured to scan an object seen through the transparent display, a position of the scanner being adjustable with respect to the transparent display; and a controller configured to provide information corresponding to the scanned object on the transparent display, in response to occurrence of a predetermined event.
Abstract:
A display apparatus includes a main panel which displays video, a sub panel which projects and provides the video displayed on the main panel by including a first lens array and a second lens array facing the first lens array so as to share a focus with the first lens array, a hinge which connects the sub panel and the main panel in a manner in which the sub panel is displaceable from the main panel according to user manipulation, a sensor which senses angles formed by the main panel and the sub panel, and a controller which controls so that the video is adjusted based on the sensed angles and displayed on the main panel.
Abstract:
A display apparatus is disclosed. The display apparatus includes a panel unit which comprises a plurality of sub pixels having different colors; a backlight unit which provides backlight to the panel unit using a white light source and a blue light source; an image processing unit which converts image data into first color frame data and second color frame data; a panel driving unit which turns on a first color sub pixel according to the first color frame data, and which turns on a second color sub pixel according to the second color frame data; a backlight driving unit for driving the backlight unit; and a control unit which controls the backlight driving unit to consecutively turn on the white light source and the blue light source according to operations of the panel driving unit. Accordingly, brightness may be enhanced.
Abstract:
Provided are a method and apparatus for displaying a two-dimensional (2D)/three-dimensional (3D) image, and apparatus to execute the same, the method including determining whether an input image sequence having a first frame rate is a 2D image sequence or a 3D image sequence, wherein, if the input image sequence is a 2D image sequence, generating a 2D output image sequence having a second frame rate, the 2D output image sequence including the input image sequence and a 2D intermediate image generated from the input image sequence, and wherein, if the input image sequence is a 3D image sequence, generating a 3D output image sequence having a third frame rate, where a left-viewpoint intermediate image, a right-viewpoint intermediate image and the input image sequence are repeatedly included in the 3D output image sequence, the left-viewpoint intermediate image is determined from at least one left-viewpoint image in a left-viewpoint image sequence included in the input image sequence, and the right-viewpoint intermediate image is determined from at least one right-viewpoint image in a right-viewpoint image sequence included in the input image sequence.