Abstract:
A method includes enabling, by a tethering device that is tethered to a tethered device, a firewall to redirect network traffic from the tethered device to an authentication application executing on the tethering device. The method also includes receiving, by the tethering device from the tethered device, a user certificate of the tethered device during an authentication process. The method further includes verifying, by the tethering device, the user certificate of the tethered device using a certificate authority (CA) certificate of the tethered device that is installed on the tethering device. In addition, the method includes, in response to successful verification of the user certificate of the tethered device, disabling the firewall to allow the network traffic to and from the tethered device.
Abstract:
A method, mobile device, and non-transitory computer readable medium for transmitting information. The method includes determining, by a mobile device, a distance between the mobile device and another device in response to a request for the mobile device to transmit the information. The method also includes determining, by the mobile device, whether the distance between the mobile device and the other device is within a threshold distance. Additionally, the method includes transmitting, by the mobile device, the information to the other device after determining that the distance between the mobile device and the other device is within the threshold distance.
Abstract:
A method, mobile device, and non-transitory computer readable medium for transmitting information. The method includes determining, by a mobile device, a distance between the mobile device and another device in response to a request for the mobile device to transmit the information. The method also includes determining, by the mobile device, whether the distance between the mobile device and the other device is within a threshold distance. Additionally, the method includes transmitting, by the mobile device, the information to the other device after determining that the distance between the mobile device and the other device is within the threshold distance.
Abstract:
A method includes enabling, by a tethering device that is tethered to a tethered device, a firewall to redirect network traffic from the tethered device to an authentication application executing on the tethering device. The method also includes receiving, by the tethering device from the tethered device, a user certificate of the tethered device during an authentication process. The method further includes verifying, by the tethering device, the user certificate of the tethered device using a certificate authority (CA) certificate of the tethered device that is installed on the tethering device. In addition, the method includes, in response to successful verification of the user certificate of the tethered device, disabling the firewall to allow the network traffic to and from the tethered device.
Abstract:
A method is provided for wireless data transfer. The method includes determining, at a mobile device, communication capability of another device for receiving data. The method also includes selecting an optimal communication protocol for communicating the data based on the determined communication capability. The method also includes communicating the data with the other device using the selected optimal communication protocol.
Abstract:
A method for providing an anti-rollback secure timer service includes determining, at a device which includes a processor providing a trusted execution environment (TEE), a trusted memory, and a real time clock (RTC) accessible through an operating system of the device, an initial reference time value, by a secure timer application running in the TEE, the initial reference time value determined based on an initial value of the RTC obtained during booting of the device and a time delta value. The method further includes determining an updated reference time value based on the initial reference time value, a second value of the RTC, and a previously stored old reference time value, determining an updated time delta value based on the second value of the RTC and the updated reference time value, and storing the updated time delta value and the updated reference time value in the trusted memory.
Abstract:
A user device comprising: i) transmit path circuitry and receive path circuitry configured to communicate with a payment server; and ii) processing circuitry configured to control the transmit path circuitry and receive path circuitry. The processing circuitry is further configured to: a) receive a user input related to a payment process; b) calculate a risk score indicative of a likelihood of fraudulent activity associated with the payment process, wherein the risk score calculation is based on confidential information associated with the user that is stored on the user device; and c) transmit to the payment server a payment action and the risk score associated with the payment action without disclosing the confidential information. The confidential information comprises personally identifiable information and/or private information of the user. The processing circuitry calculates the risk score using a risk base model received from a model server.
Abstract:
Methods, electronic devices, and systems for exchanging encrypted information. A method for exchanging encrypted information by an electronic device includes generating one or more device certificates and one or more device public private key pairs. The one or more device certificates are signed using a device unique private key that is pre-stored on the electronic device. The method also includes sending the one or more device certificates to a server of a token service provider (TSP). The method further includes receiving one or more TSP certificates from the TSP server. The method includes identifying one or more TSP public keys of the TSP server based on the one or more received TSP certificates. Additionally, the method includes transmitting a message including the information encrypted based on the one or more identified TSP public keys and a signature of the electronic device.
Abstract:
Methods, electronic devices, and systems for exchanging encrypted information. A method for exchanging encrypted information by an electronic device includes generating one or more device certificates and one or more device public private key pairs. The one or more device certificates are signed using a device unique private key that is pre-stored on the electronic device. The method also includes sending the one or more device certificates to a server of a token service provider (TSP). The method further includes receiving one or more TSP certificates from the TSP server. The method includes identifying one or more TSP public keys of the TSP server based on the one or more received TSP certificates. Additionally, the method includes transmitting a message including the information encrypted based on the one or more identified TSP public keys and a signature of the electronic device.
Abstract:
A method, electronic device, and non-transitory computer readable medium for transmitting information is provided. The method includes creating a card network account for each card network of a plurality of card networks. The method also includes associating with a digital card the created card network accounts and providing to at least one of the card network accounts an account balance of the digital card. Additionally, the method includes receiving, from a mobile device, a selection of the digital card to conduct a transaction at a location. The method also includes providing a suggested card network, determined from the plurality of card networks, to the mobile device, to conduct the transaction. The suggested card network is based in part on which card networks accepted at the location. The method also includes updating the account balance of the digital card on completion of the transaction.