Abstract:
A lithography metrology method is provided. Focus sensitivity data and dose sensitivity data of sample patterns to be formed on a substrate are acquired. At least one focus pattern selected in descending order of focus sensitivity from among the acquired focus sensitivity data of the sample patterns is determined. At least one low-sensitivity focus pattern in ascending order of the focus sensitivity from among the acquired dose sensitivity data of the sample patterns is selected, and at least one dose pattern selected in descending order of dose sensitivity from among the at least one low-sensitivity focus pattern is determined. A split substrate having a plurality of chip regions is prepared. A plurality of focus split patterns having a shape corresponding to the at least one focus pattern and a plurality of dose split patterns having a shape corresponding to the at least one dose pattern in the plurality of chip regions are formed. A best focus and a best dose from the plurality of focus split patterns and the plurality of dose split patterns are determined.
Abstract:
A method of detecting focus shift in a lithography process, a method of analyzing an error of a transferred pattern using the same, and a method of manufacturing a semiconductor device using the methods are provided. The focus shift detecting method of a lithography process comprises generating a first contour band of a mask pattern between a first focus and a second focus, generating a second contour of the mask pattern between the first focus and a third focus, and determining whether focus shift of the mask pattern occurs using an intersection of the first contour band and the second contour band.