Abstract:
A display device includes a first substrate including a display area and a non-display area which is outside the display area; a first gate signal line and a second gate signal line each on the non-display area of the first substrate; a connection electrode which is on the non-display area of the first substrate and connects the first gate signal line and the second gate signal line to each other; and a static electricity prevention pattern which is on the non-display area of the first substrate and on the connection electrode.
Abstract:
A manufacturing device for a liquid crystal display panel includes a stage including a first stage part and second stage part. The stage is configured to support a substrate laminate. A knife includes an entrance portion and a rigidity securing portion. The knife is configured to peel a support substrate of the substrate laminate. The stage is configured to rotate in a direction parallel with a surface of the stage. The rigidity securing portion of the knife is thicker than an entrance portion of the knife.
Abstract:
A curved liquid crystal display and a method of manufacturing it are presented. The display includes: a substrate having a central portion; a thin film transistor disposed on the substrate; a pixel electrode connected to the thin film transistor; and a roof layer disposed to face the pixel electrode; and a liquid crystal layer disposed between the pixel electrode and the roof layer and formed by a plurality of microcavities, wherein the microcavities hold a liquid crystal material, wherein a difference between a maximum cell gap and a minimum cell gap in each of the microcavities increases with distance from the central portion of the substrate.
Abstract:
A liquid crystal display is provided that includes: a substrate; a thin film transistor disposed on the substrate; a protection layer disposed on the thin film transistor; a first electrode and a second electrode disposed on the protection layer; an alignment layer disposed on the second electrode; and a roof layer facing the second electrode, wherein a plurality of microcavities are formed between the second electrode and the roof layer, the microcavities include a liquid crystal material, and the alignment layer includes a photo-alignment material.
Abstract:
A manufacturing device for a liquid crystal display panel includes a stage including a first stage part and second stage part. The stage is configured to support a substrate laminate. A knife includes an entrance portion and a rigidity securing portion. The knife is configured to peel a support substrate of the substrate laminate. The stage is configured to rotate in a direction parallel with a surface of the stage. The rigidity securing portion of the knife is thicker than an entrance portion of the knife.
Abstract:
A liquid crystal display including: a substrate; a thin film transistor disposed on the substrate; a pixel electrode connected to the thin film transistor; a lower insulating layer facing the pixel electrode; and a touch sensor disposed on the lower insulating layer, the touch sensor including a first transparent conductive layer and a second transparent conductive layer. A plurality of microcavities is formed between the pixel electrode and the lower insulating layer.The microcavities form a liquid crystal layer including a liquid crystal material, the lower insulating layer has a matrix shape including a horizontal portion and a vertical portion, and the second transparent conductive layer overlaps the vertical portion of the lower insulating layer.
Abstract:
A polarizing plate includes a first glass plate; a second glass plate facing the first glass plate; and a polarizing device between the first and second glass plates. An external surface of at least one of the first and second glass plates, which is not in contact with the polarizing device, has a root mean square surface roughness of about 1 nanometer or less.
Abstract:
A display device includes a display panel having a plurality of selective light transmitting regions through which light can be controllably transmitted and one or more light blocking regions. It further includes a backlighting unit disposed and configured to supply backlighting light to the display panel and a backlighting light changing layer configured to change one or more optical characteristics (e.g., polarization) of light passed therethrough. The display device further includes a reflection pattern layer disposed between the backlighting light changing layer and the backlighting unit and including a plurality of light-passing regions configured to let light pass therethrough and one or more reflection portions configured to reflect light, where the reflection portions are disposed to intercept, and reflect light coming from the backlighting unit and heading forward to a corresponding one or more of the light blocking regions of the display panel back to the backlighting unit.