Abstract:
A pixel circuit including an organic light emitting diode (OLED), a first transistor, a first capacitor, a second transistor, a second capacitor and a third transistor is disclosed. In one aspect, the first transistor controls the amount of current flowing from a first power source to a second power source via the OLED, corresponding to a voltage at a first node. The first capacitor has a first terminal connected to a data line. The second transistor is connected between a second terminal of the first capacitor and a second node. The second capacitor is connected between the second node and the first node. The third transistor is connected between a fixed voltage source and the second terminal of the first capacitor, and has a turn-on period non-overlapping with that of the second transistor.
Abstract:
An organic light emitting display includes: a display panel including pixels at crossing regions of data lines and scan lines; a scan driver configured to divide one frame into a plurality of sub-fields, to divide each of the subfields into p (p is a positive integer of 2 or more) periods, and to supply scan signals to the scan lines; and a data driver configured to supply data voltages to the data lines concurrently with supply of respective scan signals, wherein a gray scale voltage from among (P+1) gray scale voltages is supplied as at least one of the data voltages.
Abstract:
An organic light emitting diode (OLED) display device includes a plurality of pixels each having a pixel circuit and an organic light emitting diode coupled to the pixel circuit. The OLED display device includes a scan driver which is configured to supply a scan signal to the scan lines and to supply an emission control signal to an emission control line commonly coupled to the pixels. The OLED display device also includes repair lines and repair circuits coupled to the repair lines. The repair circuits each have an output terminal coupled to an organic light emitting diode in corresponding pixel. A switching unit is configured to allow output lines of the data driver to be selectively coupled to the repair lines or the data lines.
Abstract:
An organic light emitting display including a repair circuit is disclosed. In one aspect the organic light emitting diode (OLED) display includes a pixel unit having a plurality of pixels positioned at the intersection of scanning lines, data lines, and power lines, The OLED display further includes an organic light emitting diode OLED connected to the pixel circuit, and repair lines disposed in parallel with data lines and repair circuits connected to the repair lines and the power lines. The OLED display further includes a switching unit for selectively connecting output lines of the data driving unit to the repair lines or the data lines.
Abstract:
A thin film transistor includes a substrate, a gate electrode on the substrate, an active layer spaced from the gate electrode, a source electrode and a drain electrode spaced from the gate electrode and coupled to the active layer, a gate wiring at a same layer as the gate electrode and coupled to the gate electrode, and first conductive members electrically coupled to, and overlapping, the gate wiring.
Abstract:
A double gate thin-film transistor (TFT), and an organic light-emitting diode (OLED) display apparatus including the double gate TFT, includes a double gate thin-film transistor (TFT) including: a first gate electrode on a substrate; an active layer on the first gate electrode; source and drain electrodes on the active layer; a planarization layer on the substrate and the source and drain electrodes, and having an opening corresponding to the active layer; and a second gate electrode in the opening.
Abstract:
A scan driver includes a plurality of stages for respectively outputting a plurality of scan signals, an N-th stage of the stages including a shift register for outputting an N-th carry signal based on a frame start signal or based on a carry signal from a previous stage, and an output control block for outputting the N-th carry signal as an N-th scan signal in a display mode, and for repeatedly outputting active periods of the N-th scan signal during an active period of the N-th carry signal in a sensing mode, wherein N is a positive integer.
Abstract:
An organic light emitting display device includes pixels. Each of the pixels includes an organic light emitting diode. The organic light emitting diode does not emit light during a first period where a voltage having a first level voltage is applied to the first voltage supply line, and the organic light emitting diode emits light during a second period where a second level voltage is applied to the first voltage supply line.
Abstract:
An organic light emitting display includes: a display panel including pixels at crossing regions of data lines and scan lines; a scan driver configured to divide one frame into a plurality of sub-fields, to divide each of the subfields into p (p is a positive integer of 2 or more) periods, and to supply scan signals to the scan lines; and a data driver configured to supply data voltages to the data lines concurrently with supply of respective scan signals, wherein a gray scale voltage from among (P+1) gray scale voltages is supplied as at least one of the data voltages.
Abstract:
A pixel includes a plurality of organic light emitting diodes, each of which including a cathode electrode coupled to a second power source, a pixel circuit coupled to a scan line and to a data line, the pixel circuit configured to control current supplied from a first power source to the organic light emitting diodes corresponding to a data signal supplied to the data line, and first transistors between the pixel circuit and respective ones of the organic light emitting diodes, the first transistors configured to be turned on or to be turned off when a low emission control signal is supplied to a first emission control line, wherein a scan signal supplied to the scan line is a first voltage, and wherein the low emission control signal is a second voltage that is different than the first voltage.