Abstract:
A display device and driving method thereof are disclosed. The display device includes a pixel emitting light at a luminance corresponding to an output grayscale value and a color shifter for converting an input grayscale value into the output grayscale value based on output color gamut information. The color shifter includes an offset storage unit storing reference color gamut information and offset information; and a color gamut determination unit that determines the output color gamut information using the reference color gamut information and the offset information when the color shift level corresponds to a value between the reference level and the shift levels, and determines tire output color gamut information using second offset information in which the offset information is inverted and the reference color gamut information when the color shift level is not between the reference level and the shift levels.
Abstract:
An organic light emitting display device and a driving method thereof are disclosed. The display device has sub-pixels of multiple colors. In one aspect, the organic light emitting display device detects sub-pixels which are positioned at the edges of the panel. Data for the sub-pixels on the edges are reduced so that colors on the edges are less observable.
Abstract:
A display driving apparatus and a driving method may improve the compression rate of data. The display driving apparatus may include: an encoder configured to compress data of a Pentile method, using any one of a plurality of encoding methods, and compress the data according to a pattern encoding method in addition to the any one of the plurality of encoding methods when the data corresponds to a specific pattern; a decoder configured to decompress the data compressed in the encoder according to a decoding method corresponding to the any one of the encoding methods; and a data driver configured to generate a data signal using the data decompressed in the decoder.
Abstract:
An organic light emitting display device and a driving method thereof are disclosed. The display device has sub-pixels of multiple colors. In one aspect, the organic light emitting display device detects sub-pixels which are positioned at the edges of the panel. Data for the sub-pixels on the edges are reduced so that colors on the edges are less observable.
Abstract:
A display device includes dots and a grayscale correction unit. Each dot among the dots includes a first pixel of a first color, a second pixel of a second color, and a third pixel of a third color. The grayscale correction unit is configured to generate corrected grayscale values for a target dot via application of weights to grayscale values of the target dot and grayscale values of neighboring dots of the target dot among the dots. The grayscale correction unit is configured to determine the weights based on the grayscale values of the target dot.
Abstract:
An organic light emitting display device and a driving method thereof are disclosed. The display device has sub-pixels of multiple colors. In one aspect, the organic light emitting display device detects sub-pixels which are positioned at the edges of the panel. Data for the sub-pixels on the edges are reduced so that colors on the edges are less observable.
Abstract:
A display device including dots and a grayscale correction unit. Each dot among the dots includes a first pixel of a first color, a second pixel of a second color, and a third pixel of a third color. The grayscale correction unit is configured to generate corrected grayscale values for a target dot via application of weights to grayscale values of the target dot and grayscale values of neighboring dots of the target dot among the dots. The grayscale correction unit is configured to determine the weights based on the grayscale values of the target dot.
Abstract:
An organic light emitting display device and a driving method thereof are disclosed. The display device has sub-pixels of multiple colors. In one aspect, the organic light emitting display device detects sub-pixels which are positioned at the edges of the panel. Data for the sub-pixels on the edges are reduced so that colors on the edges are less observable.
Abstract:
An organic light emitting display device and a driving method thereof are disclosed. The display device has sub-pixels of multiple colors. In one aspect, the organic light emitting display device detects sub-pixels which are positioned at the edges of the panel. Data for the sub-pixels on the edges are reduced so that colors on the edges are less observable.
Abstract:
A display driving apparatus and a driving method may improve the compression rate of data. The display driving apparatus may include: an encoder configured to compress data of a Pentile method, using any one of a plurality of encoding methods, and compress the data according to a pattern encoding method in addition to the any one of the plurality of encoding methods when the data corresponds to a specific pattern; a decoder configured to decompress the data compressed in the encoder according to a decoding method corresponding to the any one of the encoding methods; and a data driver configured to generate a data signal using the data decompressed in the decoder.