Abstract:
A display substrate includes a first conductive line extending along a first direction and a second conductive line partially overlapping the first conductive line with a first insulation layer in between. The second conductive line includes a first substantially linear portion and a second substantially linear portion extending along the first direction, and an angled portion disposed between the first substantially linear portion and the second substantially linear portion. At least one side surface of the angled portion extends along a second direction intersecting the first direction.
Abstract:
A controller for a display panel includes a detector, a timing controller, and a voltage generator. The detector detects a predetermined pattern in an image signal. The timing controller generates a control signal based on detection of the pattern. The voltage generator changes at least one driving voltage for a display panel from a first level to a second level based on the control signal. The predetermined pattern may correspond to at least one region having a predetermined arrangement of at least first and second gray scale values of pixels in an image corresponding to the image signal.
Abstract:
A pixel of an organic light emitting display device includes a transistor configured to output a first source voltage, an organic light emitting diode coupled to the transistor, and a wiring configured to be applied with a reference voltage to ground a leakage current of the transistor. The organic light emitting diode includes a first electrode configured to receive the first source voltage, a first common layer on the first electrode, an organic light emitting layer on the first common layer, and a second electrode on the organic light emitting layer and configured to be applied with a second source voltage different from the first source voltage. The first common layer is coupled to the wiring.
Abstract:
A pixel of an organic light emitting display device includes a transistor configured to output a first source voltage, an organic light emitting diode coupled to the transistor, and a wiring configured to be applied with a reference voltage to ground a leakage current of the transistor. The organic light emitting diode includes a first electrode configured to receive the first source voltage, a first common layer on the first electrode, an organic light emitting layer on the first common layer, and a second electrode on the organic light emitting layer and configured to be applied with a second source voltage different from the first source voltage. The first common layer is coupled to the wiring.
Abstract:
A circuit board assembly includes a main board and a connection board attached to the main board. The connection board includes a base board including a connecting pad area and a mounting area, wherein the connection board is attached to the main board in the connecting pad area, and wherein the mounting area is spaced apart from the connecting pad area in a first direction and includes a driving chip mounted thereon. The connection board further includes first connection pads disposed on the connecting pad area of the base board, and second connection pads disposed on the connecting pad area of the base board. The main board includes first main pads connected to the first connection pads in a one-to-one connection and a second main pad connected to the second connection pads in a many-to-one connection.
Abstract:
A display apparatus includes a display panel, a gate driving part, and a data driving part. The display panel is configured to display an image, and includes a gate line and data lines. The gate driving part is configured to output a gate signal to the gate line. The data driving part includes a plurality of data driving integrated circuit parts. Each of the plurality of data driving integrated circuit parts includes channels, configured to output data signals to the data lines, and a dummy data channel. A sensing pin, configured to receive the gate signal, is formed in each dummy data channel.
Abstract:
Disclosed is a display apparatus including: a display panel including pixels connected with a plurality of gate lines and a plurality of data lines; a gate driver supplying gate signals to the gate lines; and a data driver supplying data voltages to the data lines. The data driver includes a temperature measurer generating a temperature signal of the data driver.
Abstract:
A driving circuit includes a receiver configured to receive an image control signal comprising a data signal and a clock signal, separate the data signal from the clock signal and output the separated data and clock signals, a clock recovery unit generating a reference clock signal based on the clock signal and generating a plurality of multi-phase clock signals having different phases from that of the reference clock signal, an output clock generation unit outputting an output clock signal in synchronization with the clock signal and the plurality of multi-phase clock signals, and a data output unit driving a plurality of data lines with a data driving signal corresponding to the data signal in synchronization with the output clock signal, and the output clock generation unit outputs the plurality of multi-phase clock signals.
Abstract:
A pixel of an organic light emitting display device includes a transistor, an organic light emitting diode, and a common line. The organic light emitting diode includes a first common layer, an organic light emitting layer disposed on the first common layer, and a second common layer. The common line is disposed between the first common layer and the second common layer to make electrical contact with the first common layer. The common line is supplied with a reference voltage to prevent the organic light emitting diode from generating light by leakage current in the transistor.
Abstract:
An organic light emitting diode (OLED) display device includes a first power supply circuit configured to generate a pixel driving voltage, a display panel configured to receive the pixel driving voltage from the first power supply circuit, and including a plurality of pixels each configured to emit light based thereon, and a scan driver configured to receive the pixel driving voltage from the display panel, and to provide scan signals based on the pixel driving voltage to the plurality of pixels.