Abstract:
Disclosed is an organic light emitting diode display including an organic light emitting display panel configured to display an image, and a lower passivation film attached to a bottom of the organic light emitting diode display panel. The lower passivation film includes a support film that is in contact with the organic light emitting diode display panel, and a stress adjustment layer formed beneath the support film and configured to reduce a bending stress to be induced in the organic light emitting display panel when the organic light emitting display panel and the lower passivation film are bent.
Abstract:
A display device includes a display panel having a display region, a pad region, and a bendable region between the display region and the pad region; a protective member on the display region and the bendable region of the display panel; and an adhesive disposed in the bendable region in contact with a top surface of the display panel and a bottom surface of the protective member.
Abstract:
An organic light emitting diode (OLED) display includes: a display layer including a front display layer configured to display an image at a front of the OLED display and a bending display layer bent at an end of the front display layer, and a thin film encapsulation layer covering the display layer. The thin film encapsulation layer includes a front encapsulation layer disposed on the front display layer and a bending encapsulation layer disposed on the bending display layer and having a plurality of pores.
Abstract:
Disclosed is an organic light emitting diode display including an organic light emitting display panel configured to display an image, and a lower passivation film attached to a bottom of the organic light emitting diode display panel. The lower passivation film includes a support film that is in contact with the organic light emitting diode display panel, and a stress adjustment layer formed beneath the support film and configured to reduce a bending stress to be induced in the organic light emitting display panel when the organic light emitting display panel and the lower passivation film are bent.
Abstract:
A display device including a display panel including a substrate, pixels provided on the substrate, and first lines connected to the pixels, the display device having a bending area where the display panel is bent. The display panel also includes a chip on film overlapping with a portion of the display panel and having second lines, an anisotropic conductive film provided between the chip on film and the display panel connecting the first lines and the second lines, and a coating layer covering the bending area and one end of the chip on film. In such a device, lines of the chip on film may be prevented from being corroded as they may be spaced apart from an edge of an insulating film.
Abstract:
A display device includes a display panel including a substrate, pixels provided on the substrate, and first lines connected to the pixels, the display device having a bending area where the display panel is bent. The display panel also includes a chip on film overlapping with a portion of the display panel and having second lines, an anisotropic conductive film provided between the chip on film and the display panel connecting the first lines and the second lines, and a coating layer covering the bending area and one end of the chip on film. In such a device, lines of the chip on film may be prevented from being corroded as they may be spaced apart from an edge of an insulating film.
Abstract:
A display device including a display panel including a substrate, pixels provided on the substrate, and first lines connected to the pixels, the display device having a bending area where the display panel is bent. The display panel also includes a chip on film overlapping with a portion of the display panel and having second lines, an anisotropic conductive film provided between the chip on film and the display panel connecting the first lines and the second lines, and a coating layer covering the bending area and one end of the chip on film. In such a device, lines of the chip on film may be prevented from being corroded as they may be spaced apart from an edge of an insulating film.
Abstract:
Disclosed is an organic light emitting diode display including an organic light emitting display panel configured to display an image, and a lower passivation film attached to a bottom of the organic light emitting diode display panel. The lower passivation film includes a support film that is in contact with the organic light emitting diode display panel, and a stress adjustment layer formed beneath the support film and configured to reduce a bending stress to be induced in the organic light emitting display panel when the organic light emitting display panel and the lower passivation film are bent.
Abstract:
Provided is a manufacturing method of a flexible display device, including locally deforming a transparent window; attaching a contractive film to a flexible display panel including a display area implementing an image; bending the flexible display panel by applying energy to the contractive film; and attaching the flexible display panel to the transparent window.
Abstract:
Disclosed is an organic light emitting diode display including an organic light emitting display panel configured to display an image, and a lower passivation film attached to a bottom of the organic light emitting diode display panel. The lower passivation film includes a support film that is in contact with the organic light emitting diode display panel, and a stress adjustment layer formed beneath the support film and configured to reduce a bending stress to be induced in the organic light emitting display panel when the organic light emitting display panel and the lower passivation film are bent.