Abstract:
The present disclosure provides a display apparatus including a head tracker obtaining information of movement of a user and formed on a display substrate and generating a temporary image using the information of the movement of the user. The head tracker is configured to output information of movement of a user to the driving controller. The driving controller is configured to generate a temporary image based on the information of the movement of the user. The display panel is configured to selectively display an input image and the temporary image.
Abstract:
A display apparatus includes a first polarizer, a second polarizer facing the first polarizer, an organic light emitting element overlapping the first polarizer and the second polarizer, a first electrode and a second electrode between the first polarizer and the second polarizer and facing each other, and a liquid crystal layer between the first electrode and the second electrode.
Abstract:
A display apparatus includes a first polarizer, a second polarizer facing the first polarizer, an organic light emitting element overlapping the first polarizer and the second polarizer, a first electrode and a second electrode between the first polarizer and the second polarizer and facing each other, and a liquid crystal layer between the first electrode and the second electrode.
Abstract:
An organic light-emitting display apparatus includes a substrate divided into a display area and a peripheral area that is around the display area. Pixels are formed over the display area. For each pixel, a thin film transistor is provided. An insulation film covers the thin film transistor. Each pixel includes a pixel electrode disposed on the insulation film and electrically connected to the thin film transistor, a pixel defining layer covering an edge area of the pixel electrode, an opposite electrode facing the pixel electrode, and an organic light-emitting layer disposed between the pixel electrode and the opposite electrode. The pixel defining layer includes an opening to expose a center area of the pixel electrode, a first inclination portion, and a second inclination portion. An end of the pixel electrode is disposed between the insulation film and the second inclination portion.
Abstract:
A thin film transistor “TFT”) substrate includes a substrate, an active layer over the substrate, and first and second TFTs over the substrate. The active layer includes: a first drain region, a first channel region and a first source region, which function as a drain, a channel and a source of the first TFT: a first lightly doped region between the first drain region and the first channel region: a second lightly doped region between the first channel region and the first source region: and a second drain region, a second channel region and a second source region, which function as a drain, a channel and a source of the second TFT. An impurity concentration at the second drain or source region is lower than an impurity concentration at the first drain or source region and higher than an impurity concentration at the first or second channel region.
Abstract:
A conductive material layer for forming a conductive pattern is formed on a substrate. A photosensitive organic material layer is formed on the conductive material layer. The photosensitive organic material layer is irradiated through a halftone mask. The halftone mask includes a first mask region having a boundary corresponding to an edge of the conductive pattern, a second mask region, and a third mask region disposed between the first mask region and the second mask region. A first pattern including a first region corresponding to the first mask region and a second region corresponding to the third mask region is formed by removing the photosensitive organic material layer. The conductive material layer is etched using the first pattern as a hard mask to form the conductive pattern having exposed lateral surfaces. A second pattern is formed that covers the lateral surfaces of the conductive pattern by reflowing the first pattern.
Abstract:
An organic light-emitting display that includes a substrate comprising a pixel area, a thin film transistor arranged within the pixel area, a wiring electrically connected to the a thin film transistor, an insulating layer covering the thin film transistor and the wiring, a pixel electrode arranged over the insulating layer, a pixel-defining layer having an opening that exposes the pixel electrode, an opposite electrode facing the pixel electrode and an organic emission layer interposed between the pixel electrode and the opposite electrode, the insulating layer having a first region that is overlapped by the pixel electrode and a second region that is not overlapped by the pixel electrode, the second region being thicker than the first region to reduce parasitic capacitance between the opposite electrode and the wiring.
Abstract:
A method of manufacturing a thin film transistor and a method of manufacturing a display substrate having the same are disclosed. In one aspect, the method of manufacturing a thin film transistor comprises forming an oxide semiconductor layer over a substrate, plasma-treating the oxide semiconductor layer with a plasma generated from a nitrogen gas or a nitric oxide gas so as to decrease defects in the oxide semiconductor layer, and annealing the plasma-treated oxide semiconductor layer to form a channel layer.
Abstract:
An OLED display device including: a substrate including a display area and a non-display area; an organic light emitting element including a first electrode, an organic light emitting layer on the first electrode, and a second electrode on the organic light emitting layer; a first conductive line at the non-display area of the substrate; a first organic layer on the first conductive line; a second conductive line on the first organic layer and connected to the first conductive line; a second organic layer on the second conductive line; and a third conductive line on the second organic layer and connected to the second conductive line. The third conductive line is connected to the second electrode. The first electrode is at the display area of the substrate.
Abstract:
A method of molding a window for a display device includes: forming curved side surfaces and curved corners of the window, by pressing a heated preliminary window glass to a mold. The mold includes: a flat portion corresponding to a flat display portion of the display device; a window side surface bending portion corresponding to the side surfaces of the display device; and a window corner bending portion corresponding to the corners of the display device. The forming the curved side surfaces of the window includes pressing the heated preliminary window glass against the window side surface bending portion of the mold; and after the forming of the curved side surfaces, forming the curved corners and a flat portion of the window by further pressing the heated preliminary window glass respectively against the window corner bending portion and the flat portion of the mold.