Abstract:
The display panel includes an upper display substrate including a plurality of pixel areas and a light blocking area, a lower display substrate. The upper display substrate includes a base substrate, a barrier part overlapping the light blocking area and disposed on the base substrate, a light blocking layer including a first light blocking portion disposed on the barrier part and a second light blocking portion disposed on the same layer as the barrier part to respectively overlap the pixel areas, a reflection layer including a first reflection portion disposed on the first light blocking portion and a second reflection portion disposed on the second light blocking portion, and a light control layer overlapping the pixel areas and disposed on the reflection layer. A plurality of openings passing through the second light blocking portion and the second reflection portion are defined in each of the pixel areas.
Abstract:
A method of manufacturing a display panel, the method includes forming a display panel including a first substrate, the first substrate including a pixel electrode disposed thereon, a second substrate including a common electrode disposed thereon, and a liquid crystal layer interposed between the first and the second substrates, the liquid crystal layer including a plurality of liquid crystal molecules and a plurality of ultraviolet (“UV”)-curable particles; and curing a portion of the UV-curable particles by irradiating light on the display panel, wherein an exposure voltage, which is greater than a maximum data voltage corresponding to maximum grayscale data of the display panel, is applied between the pixel electrode and the common electrode. Also described is a display panel.
Abstract:
A color conversion panel includes a plurality of banks which partition a first emission area, a second emission area and a third emission area of the color conversion panel at which light of different colors are respectively emitted, a color conversion layer which color-converts light, in the first emission area, and a transmission layer which transmits light without color conversion, in the second emission area and the third emission area.
Abstract:
A liquid crystal composition includes a first compound represented by following Chemical Formula 1, a second compound represented by following Chemical Formula 2, and at least one of a third compound represented by following Chemical Formula 3 and a fourth compound represented by following Chemical Formula 4. In which R and R′ are independently an alkyl group or an alkoxy group.
Abstract:
A display device includes a speaker film disposed on an upper surface of a first substrate of a main body or a lower surface of a second substrate of a main body. Alternatively, a display device includes a touch screen panel including a speaker film and disposed on an upper surface of the first substrate.
Abstract:
A display device may include a substrate, a thin film transistor, a first electrode, a second electrode, and a barrier. The thin film transistor is disposed on the substrate. The first electrode is electrically connected to the thin film transistor. The second electrode overlaps the first electrode. The barrier has a first portion and a second portion. The second portion is disposed between the first portion and the second electrode and is fluorine-doped. A side surface of the first portion is part of a boundary of an opening of the barrier and is hydrophilic. The opening of the barrier is disposed between the first electrode and the second electrode.
Abstract:
A liquid crystal composition includes: a first category compound and a second category compound. The first category compound includes a first compound represented by Chemical Formula 1 and a second compound represented by Chemical Formula 2, where each R is independently an alkyl group having a carbon number of 1 to 7, and each R may be the same or different.
Abstract:
A liquid crystal display device includes a first substrate, a second substrate facing the first substrate, and a liquid crystal layer between the first and second substrates. The liquid crystal layer includes a liquid crystal composition including an alkenyl liquid crystal and an antioxidant component including at least one selected from an antioxidant and a derivative thereof. In an embodiment, the antioxidant component is present in an amount of greater than 0 ppm and equal to or less than about 10,000 ppm relative to the total weight of the liquid crystal composition.
Abstract:
A liquid crystal display includes: a first substrate, a plurality of pixel electrodes disposed on the first substrate and including a first subpixel electrode and a second subpixel electrode including a cross stem and a plurality of minute branches extending from the cross stem; a second substrate facing the first substrate; a first alignment layer disposed on the first substrate and the pixel electrode; a second alignment layer disposed on an inner surface of the second substrate; and a liquid crystal layer injected between the first substrate and the second substrate and including a prepolymer, a reaction initiator, and a polymerization reactor, of which a content of the reaction initiator is higher than a content of the polymerization reactor.
Abstract:
A liquid crystal display device includes a first substrate, a second substrate facing the first substrate, and a liquid crystal layer between the first and second substrates. The liquid crystal layer includes a liquid crystal composition including an alkenyl liquid crystal and an antioxidant component including at least one selected from an antioxidant and a derivative thereof. In an embodiment, the antioxidant component is present in an amount of greater than 0 ppm and equal to or less than about 10,000 ppm relative to the total weight of the liquid crystal composition.