Abstract:
A liquid crystal display system including a signal processing device uses interpolation to generate an intermediate image frame using previous image frame data and present image frame data. The system converts data of the intermediate image frame into transposed image data that is to be used to drive a liquid crystal display panel and display a corresponding image. The transposed image data and the present image data are subjected to a prespecified DCC process (dynamic capacitance compensation process) to thereby generate respective first and second compensation image data. Since the first compensation image data is generated based on the transposed image data and the transposition is configured to prevent over-compensation by the DCC process, over-compensation by the dynamic capacitance compensation process can be reduced or prevented.
Abstract:
A liquid crystal display includes a timing controller and a liquid crystal panel. The timing controller sequentially receives first through third primitive image signals and sequentially outputs first through third corrected image signals. The liquid crystal panel displays an image based on the first through third corrected image signals. The timing controller generates a first converted image signal having a first gray level based on the first primitive image signal and stores the first converted image signal. The second primitive image signal has a second gray level and the timing controller generates a second converted image signal having a third gray level higher than the second gray level when the second gray level is lower than the first gray level. The timing controller generates the third corrected image signal using the second converted image signal and the third primitive image signal.
Abstract:
A driver for pixels of a display, having pixels arranged into a plurality of pixel blocks including at least two pixels in a row and at least two pixels in a column is presented. The driver includes a first converter, a second converter, and a frame memory. The first converter receives input image signals for a pixel block of the plurality of pixel blocks and generates compressed image signals by compressing the input image signals based on compression reference image signals. The frame memory stores the compressed image signals. The second converter reads the compressed image signals from the frame memory, and restores the compressed image signals based on compression reference image signals to generate restoration image signals. A compression reference image signal for a first pixel of the pixel block is the restoration image signal for a second pixel of a neighboring pixel block. Compression reference image signals for the remaining pixels in the pixel block are restoration image signals for different pixels in the pixel block.