Abstract:
A light-emitting device includes a first electrode, an emission layer, an electron transport layer, a metal-nucleation inducing layer, and a second electrode. The metal-nucleation inducing layer is in direct contact with the second electrode, and includes a metal-nucleation inducing material having at least one metal-nucleation inducing group. The second electrode includes a metal-containing film that is hybridized with the metal-nucleation inducing material. The metal-nucleation inducing group is a π electron-deficient nitrogen-containing C1-C60 cyclic group that is unsubstituted or substituted with at least one R1 or a group represented by one of Formulae 1A to 1E, and does not comprise a group represented by *—C(═O)(OH) and a cyano group. The emission efficiency and/or lifespan of the light-emitting device may be improved because of the metal-nucleation inducing layer.
Abstract:
Provided is a light emitting element according to embodiments which includes a body including a semiconductor layer and an active layer, and a ligand including a head portion bonded to a surface of the body, an end portion spaced apart from the body, and having a positive or a negative charge, and a chain portion connecting the head portion and the end portion.
Abstract:
A light-emitting device, including: a substrate; a cathode disposed on the substrate; an anode facing the cathode; and an interlayer including an emission layer, wherein the interlayer is located between the cathode and the anode, and wherein the light-emitting device further includes a photoacid generator.
Abstract:
Provided is a photosensitive resin composition including a binder resin, a photopolymerizable monomer, a photopolymerization initiator, an active component, and a solvent, wherein the active component includes acyl hydrazide, alkyl carboxylic acid, organic hydroperoxide, or any combinations thereof. Also provided are a display panel manufactured using the photosensitive resin composition described above, and a method of manufacturing the same.
Abstract:
Provided is a cross-linkable arylamine-based compound represented by Formula 1a or 1b, a polymer obtained therefrom, a light-emitting device including the polymer, and an electronic apparatus including the light-emitting device. The light-emitting device includes a first electrode; a second electrode facing the first electrode; and an intermediate layer between the first electrode and the second electrode and comprising an emission layer, wherein the intermediate layer includes at least one of the arylamine-based polymer formed by cross-linking a cross-linkable arylamine-based compound represented by Formula 1a or 1b.
Abstract:
Disclosed are a light-emitting device and a method of manufacturing the same. The light-emitting device includes: a first electrode; a second electrode facing the first electrode; an emission layer between the first electrode and the second electrode and including a quantum dot including a first ligand bonded to a surface thereof; and a charge transport layer including an inorganic nanoparticle including a second ligand bonded to a surface thereof, wherein an interface between the emission layer and the charge transport layer includes a cross-link in which the first ligand on the surface of the quantum dot and the second ligand on the surface of the inorganic nanoparticle are linked by a cross-linking agent.
Abstract:
A composition including a block copolymer, a quantum dot precursor, and a solvent, a method of forming a quantum dot layer with the composition, a quantum dot layer formed from the composition, and a light-emitting device including the quantum dot layer.
Abstract:
A compound for preparing a hole transport layer, an organic light-emitting device, and a flat display apparatus, the compound including a —N3 moiety.
Abstract:
An inorganic nanoparticle composition includes an inorganic nanoparticle and a highly fluorinated solvent, and the inorganic nanoparticle includes an inorganic material and a F-containing charge-transporting organic ligand. A light-emitting device with the inorganic nanoparticle composition, for example, as a material for forming at least a portion of an electron transport region in the light-emitting device. An electronic apparatus includes the light-emitting device.
Abstract:
A quantum dot composition includes a quantum dot, and a ligand bonded to a surface of the quantum dot, wherein the ligand includes a head portion bonded to the surface of the quantum dot and containing a polar solvent dissociative functional group, and a tail portion connected to the head portion. A quantum dot composition according to an embodiment is used to form an emission layer of a light emitting element to enhance luminous efficiency of the light emitting element including an emission layer formed through the quantum dot composition.