Abstract:
A display device and an image compensation method are disclosed. One inventive aspect includes a controller and a data driver. The controller processes image data signal based on at least one of pixel information, a reference brightness condition, a present brightness of the display device and a target luminance and generate final compensated data. The pixel information is measured under the reference brightness condition. The data driver transmits the final compensated data to an activated driving pixel.
Abstract:
An organic light emitting diode display including a display including data lines, scan lines, sense lines, and pixels electrically coupled to the data, scan, and sense lines, a compensator for sensing first and second driving currents flowing to the pixels corresponding to first and second test data in a compensation mode, to compare first and second reference currents with the first and second driving currents, respectively, and to update compensation data, a signal controller for compensating input data according to the compensation data to generate image data, and for changing the input data into the first and second test data in the compensation mode; and a data driver for generating a plurality of data signals by using one of the image data, the first and second test data, and to supply the data signals to the data lines.
Abstract:
An apparatus for compensating for a skew is provided between data signals supplied through a plurality of data lines and a clock signal supplied through a clock line. A skew compensation apparatus includes a plurality of data receivers each configured to delay a data signal supplied through a corresponding data line based on associated phase difference data and to output the delayed data signal, a clock receiver configured to receive a clock signal supplied through a clock line, and a phase controller configured to select any one of the plurality of data receivers and to output, to the selected data receiver, a phase control signal configured to correct the phase difference data of the selected data receiver based on the phase difference between a data signal output from the selected data receiver and the clock signal.
Abstract:
An apparatus for compensating for a skew is provided between data signals supplied through a plurality of data lines and a clock signal supplied through a clock line. A skew compensation apparatus includes a plurality of data receivers each configured to delay a data signal supplied through a corresponding data line based on associated phase difference data and to output the delayed data signal, a clock receiver configured to receive a clock signal supplied through a clock line, and a phase controller configured to select any one of the plurality of data receivers and to output, to the selected data receiver, a phase control signal configured to correct the phase difference data of the selected data receiver based on the phase difference between a data signal output from the selected data receiver and the clock signal.
Abstract:
An organic light emitting diode display including a display including data lines, scan lines, sense lines, and pixels electrically coupled to the data, scan, and sense lines, a compensator for sensing first and second driving currents flowing to the pixels corresponding to first and second test data in a compensation mode, to compare first and second reference currents with the first and second driving currents, respectively, and to update compensation data, a signal controller for compensating input data according to the compensation data to generate image data, and for changing the input data into the first and second test data in the compensation mode; and a data driver for generating a plurality of data signals by using one of the image data, the first and second test data, and to supply the data signals to the data lines.
Abstract:
A pixel luminance compensating unit is disclosed. In one aspect, the disclosed pixel luminance compensating unit includes an uncompensated gray-level region processing unit configured to generate first output-data by processing first input-data corresponding to a first portion of an input luminance curve corresponding to an uncompensated gray-level region. The disclosed unit further includes a compensated gray-level region processing unit configured to generate second output-data by processing second input-data corresponding to a second portion of the input luminance curve corresponding to a compensated gray-level region. The disclosed unit further includes an interpolated gray-level region processing unit configured to generate third output-data by processing third input-data corresponding to a third portion of the input luminance curve corresponding to an interpolated gray-level region, wherein the interpolated gray-level region processing unit is configured to generate the third portion by interpolating between the first portion and the second portion.
Abstract:
A display device and an image compensation method are disclosed. One inventive aspect includes a controller and a data driver. The controller processes image data signal based on at least one of pixel information, a reference brightness condition, a present brightness of the display device and a target luminance and generate final compensated data. The pixel information is measured under the reference brightness condition. The data driver transmits the final compensated data to an activated driving pixel.
Abstract:
A pixel luminance compensating unit is disclosed. In one aspect, the disclosed pixel luminance compensating unit includes an uncompensated gray-level region processing unit configured to generate first output-data by processing first input-data corresponding to a first portion of an input luminance curve corresponding to an uncompensated gray-level region. The disclosed unit further includes a compensated gray-level region processing unit configured to generate second output-data by processing second input-data corresponding to a second portion of the input luminance curve corresponding to a compensated gray-level region. The disclosed unit further includes an interpolated gray-level region processing unit configured to generate third output-data by processing third input-data corresponding to a third portion of the input luminance curve corresponding to an interpolated gray-level region, wherein the interpolated gray-level region processing unit is configured to generate the third portion by interpolating between the first portion and the second portion.