Abstract:
A method for forming a thin film for fabricating an organic light-emitting diode (OLED) display is disclosed. In one aspect, the method includes forming a plurality of shadow masks on a substrate. The substrate is then bent to form a predetermined curvature in the substrate. A deposition source is placed at a position having an equal angle with respect to central and peripheral portions of the substrate. The method also includes depositing a deposition material from the deposition source on the substrate and the shadow masks to form a thin film.
Abstract:
A display device having a touch sensor and a manufacturing method thereof. The display device includes a pixel defining layer, first electrodes, an emissive layer, second electrodes, and an insulating layer. The first electrodes are exposed and arranged through the pixel defining layer. The emissive layer is formed on each first electrode. Each second electrode is connected to the emissive layer, and the second electrodes are arranged to be spaced apart from each other. The insulating pattern is formed on the pixel defining layer exposed between adjacent second electrodes.
Abstract:
A method for forming a thin film for fabricating an organic light-emitting diode (OLED) display is disclosed. In one aspect, the method includes forming a plurality of shadow masks on a substrate. The substrate is then bent to form a predetermined curvature in the substrate. A deposition source is placed at a position having an equal angle with respect to central and peripheral portions of the substrate. The method also includes depositing a deposition material from the deposition source on the substrate and the shadow masks to form a thin film.
Abstract:
A display device having a touch sensor and a manufacturing method thereof. The display device includes a pixel defining layer, first electrodes, an emissive layer, second electrodes, and an insulating layer. The first electrodes are exposed and arranged through the pixel defining layer. The emissive layer is formed on each first electrode. Each second electrode is connected to the emissive layer, and the second electrodes are arranged to be spaced apart from each other. The insulating pattern is formed on the pixel defining layer exposed between adjacent second electrodes.
Abstract:
A method of manufacturing a liquid crystal display having a touch sensor, the method including forming a plurality of thin film transistors on a first substrate, forming a plurality of pixel electrodes each coupled to a corresponding one of the thin film transistors, forming an insulating layer on the pixel electrodes, and forming, on the insulating layer, a plurality of first touch electrodes each having openings formed therein and a plurality of driving lines coupled to the first touch electrodes.
Abstract:
A method of manufacturing a liquid crystal display having a touch sensor, the method including forming a plurality of thin film transistors on a first substrate, forming a plurality of pixel electrodes each coupled to a corresponding one of the thin film transistors, forming an insulating layer on the pixel electrodes, and forming, on the insulating layer, a plurality of first touch electrodes each having openings formed therein and a plurality of driving lines coupled to the first touch electrodes.