Abstract:
In a display device, a backlight unit including a power converter configured to generate a light source driving voltage in response to a voltage control signal, a plurality of light emitting diode strings each configured to receive the light source driving voltage through an end thereof, and a controller connected to the other end of each of the plurality of light emitting diode stringsand configured to generate a plurality of current control signals used to control a current flowing through each of the plurality of light emitting diode strings and the voltage control signal. The controller is configured to generate the voltage control signal in response to a current control signal from among the plurality of current control signals, which is applied to a light emitting diode string configured to receive a lowest forward driving voltage among the plurality of light emitting diode strings.
Abstract:
An aging system includes panel groups each including display panels, an auxiliary board including the panel groups disposed thereon, and an aging device for supplying aging signals to the display panels through line boards to perform aging on the display panels, where the aging device supplies switch signals respectively to the display panels through the line boards, where each of the display panels includes a switch unit for supplying the aging signal to a pixel unit according to the switch signal.
Abstract:
A light unit includes a DC/DC converter. A plurality of unit light emitting diode columns receive a voltage applied from the DC/DC converter. A plurality of transistors, respectively, are connected to the plurality of unit light emitting diode columns. A current deviation compensating unit compensates for deviations between currents respectively flowing through the plurality of unit light emitting diode columns by a pulse current width modulation average current control method. A connection switch sequentially connects the current deviation compensating unit with the plurality of transistors. A resistor is connected to output terminals of the plurality of transistors. A switch controller controls connection between the connection switch and the current deviation compensating unit based on a signal applied to the resistor.
Abstract:
A backlight unit includes a power converter configured to generate a light source driving voltage in response to a voltage control signal, a plurality of light emitting diode strings, where each of the light emitting diode strings receives the light source driving voltage through a first terminal thereof, a plurality of transistors corresponding to the light emitting diode strings, where each of the transistors includes: a first electrode connected to a second terminal of a corresponding light emitting diode string thereof; a second electrode; and a control electrode, and a controller connected to the control electrode and the second electrode, where the controller outputs a plurality of current control signals to control electrodes of the transistors and generate the voltage control signal, where the controller generates an over-current detection signal when any one of the current control signals has a pulse width less than a predetermined reference width.
Abstract:
A backlight unit includes a light source part including a light-emitting diode array, a DC/DC converter, a driving current controller, and a reference voltage variable part. The backlight unit is operated in a first mode or a second mode. The driving current controller controls a driving current flowing through the light-emitting diode array to have a first current level during the first mode and controls the driving current flowing through the light-emitting diode array to have a second current level during the second mode. The reference voltage variable part applies a first reference voltage to the driving current controller during the first mode and applies a second reference voltage to the driving current controller during the second mode.
Abstract:
A backlight unit may include a wall and a plurality of light sources. The wall may have a side in a cross-sectional view of the backlight unit. The side may have a curved shape in the cross-sectional view of the backlight unit. The plurality light sources may include a first light source and a second light source. The second light source may be positioned farther away from a center portion of the wall than the first light source in the cross-sectional view of the backlight unit. A minimum distance between the second light source and the side may be greater than a minimum distance between the first light source and the side in the cross-sectional view of the backlight unit.
Abstract:
In a display device, a backlight unit including a power converter configured to generate a light source driving voltage in response to a voltage control signal, a plurality of light emitting diode strings each configured to receive the light source driving voltage through an end thereof, and a controller connected to the other end of each of the plurality of light emitting diode strings and configured to generate a plurality of current control signals used to control a current flowing through each of the plurality of light emitting diode strings and the voltage control signal. The controller is configured to generate the voltage control signal in response to a current control signal from among the plurality of current control signals, which is applied to a light emitting diode string configured to receive a lowest forward driving voltage among the plurality of light emitting diode strings.