Abstract:
An organic light-emitting diode includes a first electrode, an intermediate layer on the first electrode, and a second electrode on the intermediate layer. The intermediate layer includes an emission layer including an organic material, and a functional layer between the second electrode and the emission layer and including at least one of a metal compound and a semiconductor compound including at least one of an oxygen atom and a sulfur atom. An oxygen concentration in the functional layer increases toward the second electrode, and a sulfur concentration in the functional layer increases toward the emission layer.
Abstract:
A printing apparatus includes a printing mask, which is disposed between a substrate having a display area and a non-display area surrounding the display area. The apparatus further includes a nozzle discharging an organic light emitting liquid onto the substrate. The printing mask includes a mask open part and a mask cover part. The mask open part exposes the display area, and the mask cover part surrounds the mask open part and covers the non-display area. The apparatus can be used to form an organic emitting layer on the substrate.
Abstract:
A printing apparatus includes a printing mask, which is disposed between a substrate having a display area and a non-display area surrounding the display area. The apparatus further includes a nozzle discharging an organic light emitting liquid onto the substrate. The printing mask includes a mask open part and a mask cover part. The mask open part exposes the display area, and the mask cover part surrounds the mask open part and covers the non-display area. The apparatus can be used to form an organic emitting layer on the substrate.
Abstract:
An organic light-emitting diode (OLED) display and method of manufacturing the same are disclosed. In one aspect, the OLED display includes a substrate, a thin film transistor (TFT) formed over the substrate, and a first pixel defining layer formed over the TFT and having an opening. The OLED display also includes an insulating layer formed in the opening and including a top surface having a dome shape and an OLED formed over the insulating layer.
Abstract:
Provided is an apparatus for manufacturing a deposition mask assembly for a flat panel display, which prevents a pattern from being distorted in a pattern mask when divided pattern masks are welded to a support fixture. An apparatus for manufacturing a deposition mask assembly for a flat panel display of the present description, which includes a frame mask forming an opening, a support fixture installed in the frame mask, and a pattern mask welded to the support fixture to have a pattern allowing a deposition material to be transmitted therethrough, includes: a welding head disposed in a side of the pattern mask; and a support member supporting the support fixture in an opposite side of the welding head with the pattern mask interposed therebetween.
Abstract:
A printing apparatus includes a printing mask, which is disposed between a substrate having a display area and a non-display area surrounding the display area. The apparatus further includes a nozzle discharging an organic light emitting liquid onto the substrate. The printing mask includes a mask open part and a mask cover part. The mask open part exposes the display area, and the mask cover part surrounds the mask open part and covers the non-display area. The apparatus can be used to form an organic emitting layer on the substrate.
Abstract:
An organic light-emitting diode (OLED) display and method of manufacturing the same are disclosed. In one aspect, the OLED display includes a substrate, a thin film transistor (TFT) formed over the substrate, and a first pixel defining layer formed over the TFT and having an opening. The OLED display also includes an insulating layer formed in the opening and including a top surface having a dome shape and an OLED formed over the insulating layer.
Abstract:
A method for testing an organic pattern including: forming an organic pattern on a test substrate through a mask; acquiring a test image by photographing a predetermined test area of the test substrate; and checking whether an edge of the organic pattern displayed to the test image goes over an edge of a virtual test figure.
Abstract:
Provided is an apparatus for manufacturing a deposition mask assembly for a flat panel display, which prevents a pattern from being distorted in a pattern mask when divided pattern masks are welded to a support fixture. An apparatus for manufacturing a deposition mask assembly for a flat panel display of the present description, which includes a frame mask forming an opening, a support fixture installed in the frame mask, and a pattern mask welded to the support fixture to have a pattern allowing a deposition material to be transmitted therethrough, includes: a welding head disposed in a side of the pattern mask; and a support member supporting the support fixture in an opposite side of the welding head with the pattern mask interposed therebetween.
Abstract:
An organic light-emitting diode includes a first electrode, an intermediate layer on the first electrode, and a second electrode on the intermediate layer. The intermediate layer includes an emission layer including an organic material, and a functional layer between the second electrode and the emission layer and including at least one of a metal compound and a semiconductor compound including at least one of an oxygen atom and a sulfur atom. An oxygen concentration in the functional layer increases toward the second electrode, and a sulfur concentration in the functional layer increases toward the emission layer.