Abstract:
An organic light emitting display device includes a display unit including pixels coupled to scan lines and data lines, first and second power lines coupled to the pixels, a DC-DC converter configured to output first and second power sources to the pixels via the first and second power lines, respectively, and a short-circuit-sensing circuit configured to detect whether a short-circuit between the first and second power lines occurs, and configured to control an operation of the DC-DC converter when the short-circuit is detected, wherein voltage levels of the first and second power sources are configured to be changed in a frame period, the frame period including a reverse voltage application period in which the voltage level of the second power source is higher than that of the first power source.
Abstract:
An organic light emitting diode (OLED) display includes a display unit including first pixels emitting first color light, second pixels emitting second color light, and third pixels emitting third color light, and a power source voltage supplier supplying a driving voltage to the respective pixels of the display unit. The display further includes a first voltage wire transferring the driving voltage to the first pixels, a second voltage wire transferring the driving voltage to the second pixels, and a third voltage wire transferring the driving voltage to the third pixels. The first, second and third voltage wires being provided in a first layer. The display includes auxiliary voltage wires provided in a second layer different from the first layer. Contact areas between the first, second and third voltage wire and the auxiliary voltage wires are different from each other.
Abstract:
An organic light emitting display and a driving method of the organic light emitting display capable of reducing or minimizing power consumption. The driving method includes setting a number of selection times constituting one frame, and setting a number of unit times constituting the one frame. Each of the unit times includes j (j is a natural number of 2 or more) of the selection times. Scan signals are non-sequentially supplied to scan lines during each of the unit times. The one frame includes a number of subframes. Data signals for ones of the subframes having a same length are supplied corresponding to i (i is a natural number of 2 or more) consecutive ones of the scan signals.
Abstract:
A burning protection circuit of a display device includes a plurality of current measuring units and a control unit. The display device includes a plurality of pixel blocks. Each of the pixel blocks includes a plurality of pixels. The pixel blocks are respectively supplied with power through a plurality of power supply lines. The current measuring units are configured to respectively generate a plurality of measured current values by respectively measuring a plurality of currents respectively supplied to the pixel blocks through the power supply lines. The control unit is configured to respectively generate a plurality of block data for the pixel blocks based on pixel data for the pixels of corresponding ones of the pixel blocks, and determine whether an overcurrent occurs based on a plurality of ratios of the measured current values to corresponding ones of the block data.
Abstract:
A pixel circuit and organic light emitting display device using the pixel circuit are disclosed. One aspect of the pixel circuit includes an organic light emitting diode, a switching transistor configured to transfer a data signal in response to a scan signal, a storage capacitor configured to store the data signal transferred through the switching transistor, an amplifying unit configured to amplify the data signal stored in the storage capacitor to generate an amplified signal having a swing range greater than a swing range of the data signal, and a driving transistor configured to drive the organic light emitting diode in response to the amplified signal.
Abstract:
A scan driver including a plurality of scan driving circuit units for outputting scan signals and a buffer unit for receiving a control signal input to a first scan driving circuit unit of the plurality of scan driving circuit units to output the received control signal to a second scan driving circuit unit of the plurality of scan driving circuit units.
Abstract:
A burning protection circuit of a display device includes a plurality of current measuring units and a control unit. The display device includes a plurality of pixel blocks. Each of the pixel blocks includes a plurality of pixels. The pixel blocks are respectively supplied with power through a plurality of power supply lines. The current measuring units are configured to respectively generate a plurality of measured current values by respectively measuring a plurality of currents respectively supplied to the pixel blocks through the power supply lines. The control unit is configured to respectively generate a plurality of block data for the pixel blocks based on pixel data for the pixels of corresponding ones of the pixel blocks, and determine whether an overcurrent occurs based on a plurality of ratios of the measured current values to corresponding ones of the block data.
Abstract:
An organic light emitting display includes: pixels respectively positioned in areas defined by scan lines and data lines; a scan driver configured to non-sequentially supply a scan signal to the scan lines, and to control a signal supplied by a first control line commonly coupled to the pixels so that the pixels are set in a non-emission state during a first period that is a partial period of an i (i is a natural number) frame and during a first period that is a partial period of an (i+2) frame; a data driver configured to supply a left data signal to the data lines during the i frame and during an (i+1) frame, and to supply a right data signal to the data lines during the (i+2) frame and during an (i+3) frame; and a timing controller configured to control the scan driver and the data driver, and to supply data to the data driver, wherein each of the (i+1) frame and the (i+3) frame is a period shorter than that of the i frame.
Abstract:
An organic light emitting display device includes a display unit including pixels coupled to scan lines and data lines, first and second power lines coupled to the pixels, a DC-DC converter configured to output first and second power sources to the pixels via the first and second power lines, respectively, and a short-circuit-sensing circuit configured to detect whether a short-circuit between the first and second power lines occurs, and configured to control an operation of the DC-DC converter when the short-circuit is detected, wherein voltage levels of the first and second power sources are configured to be changed in a frame period, the frame period including a reverse voltage application period in which the voltage level of the second power source is higher than that of the first power source.
Abstract:
A method of digital-driving an organic light emitting display device, which divides one frame into a plurality of sub-frames, is provided. In this method, a total number of scan operations, which are to be performed during the frame, is calculated based on a number of scan-lines and a number of the sub-frames, an emission time of each of the sub-frames is set based on a gray level maximum value and the total number of the scan operations, the emission times of the sub-frames are modified by permitting errors to the emission times of the sub-frames to control a sum of the emission times of the sub-frames to be equal to the total number of the scan operations, and each sub-frame scan timing of the scan-lines is sequentially shifted by N horizontal scan intervals, where N is the number of the sub-frames.