Abstract:
A liquid crystal display device includes a liquid crystal display panel and a backlight unit providing light to the liquid crystal display panel. The liquid crystal display panel includes a first substrate on which a thin film transistor is disposed, a second substrate facing the first substrate, a liquid crystal layer disposed between the first substrate and the second substrate, and a first polarizer disposed on the second substrate having a plurality of metal patterns spaced apart from each other by an interval. The backlight unit faces the second substrate.
Abstract:
A polarizer includes a substrate, and a first metal layer and a second metal layer disposed on the substrate. The first metal layer includes a plurality of protrusions of a wire grid pattern. Each protrusion has a first width and adjacent protrusions are spaced apart by a second width. The second metal layer is disposed on each of the protrusions of the first metal layer, and includes molybdenum (Mo) and/or titanium (Ti).
Abstract:
A wire grid pattern used as a wire grid polarizer included in a display device or a master substrate for fabricating the wire gird polarizer includes a substrate; a cell area having a plurality of cells, each of the plurality of cells having a plurality of wires protruding from the substrate and arranged in a substantially parallel relationship at regular intervals; and a bezel area disposed along a periphery of the cell area. The cell area includes a trench area separating at least some of the cells. A method for fabricating the wire grid pattern also is disclosed.
Abstract:
A wire grid pattern used as a wire grid polarizer included in a display device or a master substrate for fabricating the wire gird polarizer include a substrate; a cell area having a plurality of cells, each of the plurality of cells having a plurality of wires protruding from the substrate and arranged in a substantially parallel relationship at regular intervals; and a bezel area disposed along a periphery of the cell area. The cell area includes a trench area separating at least some of the cells. A method for fabricating the wire grid pattern also is disclosed.
Abstract:
A liquid crystal display device includes a wire grid polarizer, in which the wire grid polarizer is directly formed on a lower substrate, thereby decreasing the thickness of the liquid crystal display. In the wire grid polarizer formed on the lower substrate, a plurality of protective layers are formed on polarizing patterns that perform a polarizing function, so that it is possible to reduce or minimize the deterioration of characteristics of thin film transistors of the liquid crystal display, which are formed on the protective layers.
Abstract:
A polarizing liquid crystal panel includes a first substrate including a first base substrate, a first alignment layer, and a first electrode between the first base substrate and the first alignment layer, a second substrate including a second base substrate, a second alignment layer, and a second electrode between the second base substrate and the second alignment layer, the second substrate facing the first substrate, a spacer between the first and second substrates and maintaining a cell gap therebetween, and a liquid crystal flow preventing portion between the first and second substrates. The liquid crystal flow preventing portion extends in a first direction, and restricts movement of the spacer in a second direction substantially perpendicular to the first direction.
Abstract:
A polarizer includes a base substrate, a polarizing layer disposed on the base substrate and including a plurality of first linear extensions spaced apart from each other, and an ultraviolet (UV)-blocking layer including a plurality of second linear extensions spaced apart from each other and crossing the first linear extensions. The polarizer may block an external UV light.
Abstract:
A method of fabricating a polarizing member includes: sequentially disposing a metal layer and a preliminary pattern layer on a base substrate including a display area and a non-display area; forming a patterned resin layer on the preliminary pattern layer in the display area, the patterned resin layer including patterns formed on a surface of the patterned resin layer; surface-treating the preliminary pattern layer and the patterned resin layer; forming a mask pattern including a photoresist material on the preliminary pattern layer disposed in the non-display area; forming preliminary patterns on the preliminary pattern layer using the patterned resin layer; and forming a wire grid polarizing unit in the display area by etching the metal layer using the preliminary pattern and the mask pattern as a polarizing pattern.
Abstract:
A liquid crystal display device includes a wire grid polarizer, in which the wire grid polarizer is directly formed on a lower substrate, thereby decreasing the thickness of the liquid crystal display. In the wire grid polarizer formed on the lower substrate, a plurality of protective layers are formed on polarizing patterns that perform a polarizing function, so that it is possible to reduce or minimize the deterioration of characteristics of thin film transistors of the liquid crystal display, which are formed on the protective layers.
Abstract:
A liquid crystal display device includes a liquid crystal display panel and a backlight unit providing light to the liquid crystal display panel. The liquid crystal display panel includes a first substrate on which a thin film transistor is disposed, a second substrate facing the first substrate, a liquid crystal layer disposed between the first substrate and the second substrate, and a first polarizer disposed on the second substrate having a plurality of metal patterns spaced apart from each other by an interval. The backlight unit faces the second substrate.