Abstract:
A thin film transistor substrate may include a base substrate, a semiconductor member, a gate electrode, a first insulation layer, and a source/drain electrode. The semiconductor member may overlap the base substrate. The gate electrode may overlap the semiconductor member and may be insulated from the semiconductor member. The first insulation layer may be positioned on the gate electrode and may include a first contact hole. The source/drain electrode may include a first discharge hole, may be electrically connected to the semiconductor member, and may be at least partially positioned inside the first contact hole. The first discharge hole may partially expose the semiconductor member.
Abstract:
An organic light emitting display apparatus includes first to eighth pixels arranged in a 4*2 matrix form along first and second directions, and includes a camera which is configured to take a picture. Each of the first to eighth pixels has a width in the first direction and has a length in the second direction. Each of the first to eighth pixels has a light emitting structure and a first mirror pattern which defines an opening which overlaps the light emitting structure. The first mirror pattern defines one transmission window in every two or more pixels adjacent each other, the transmission window passes light, and the camera is configured to take a picture through the transmission window.
Abstract:
A display device includes a display panel and a camera module. The display panel displays an image on a first surface, and includes a first substrate, a sub-pixel structure, a reflection pattern, and a transflective reflection pattern. The first substrate included a plurality of pixel regions each having sub-pixel regions, a transparent region, and a reflection region surrounding the sub-pixel regions and the transparent region. The second substrate is disposed on the sub-pixel structure. The reflection pattern is disposed in the reflection region on the second substrate, and exposes the sub-pixel regions and the transparent region. The transflective reflection pattern is disposed on the second substrate, and has an opening exposing at least a portion of at least one transparent region among the transparent regions. The camera module is disposed in the second surface on the display panel, and the second surface is opposite to the first surface.
Abstract:
An organic light emitting display device includes a first substrate, a pixel structure, a second substrate, a reflective member, and a light transmitting member. The first substrate includes a plurality of pixel regions. Each of the pixel regions has sub-pixel regions and a reflective region surrounding the sub-pixel regions. The pixel structure is disposed in each of the sub-pixel regions on the first substrate. The second substrate is disposed on the pixel structure. The reflective member has an opening disposed in each of the sub-pixel regions, and is disposed in the reflective region of the second substrate. The light transmitting member covers the opening of the reflective member and partially overlaps the reflective member. The light transmitting member blocks ultraviolet rays and transmits a predetermined light.
Abstract:
A display device includes a display panel, a camera module, and a heat sink plate. The display panel displays an image on a front surface, and includes a first substrate, a sub-pixel structure, and a reflection pattern. The display panel includes a plurality of pixel regions each having sub-pixel regions, a transparent region, and a reflection region surrounding the sub-pixel regions and the transparent region. The sub-pixel structure is disposed in the sub-pixel region. The second substrate is disposed on the sub-pixel structure. The reflection pattern is disposed on the second substrate, but not on the sub-pixel region and the transparent region. The camera module is disposed in a second surface on the display panel, and the second surface is opposite to the first surface. The heat sink plate is disposed between the display panel and the camera module, and has an opening that is aligned with the camera module.
Abstract:
A display device may include a display unit disposed on a substrate and a mirror substrate facing the substrate with respect to the display unit. The mirror substrate may include a first mirror layer extending continuously on a surface of a transparent substrate and a plurality of mirror patterns on the first mirror layer. The first mirror layer is formed on both a region in which the plurality of mirror patterns are formed and a region in which the plurality of mirror patterns are not formed. External light is incident to and reflected by the first mirror layer, thus reducing an image haze and enhancing a display quality of the display device. In addition, the first mirror layer and the plurality of mirror patterns may be formed by using a single halftone mask to simplify the manufacturing process and increase a productivity of the mirror substrate.
Abstract:
An organic light emitting diode (OLED) display device and a method of fabricating the same are provided. The OLED display device includes a substrate having a thin film transistor region and a capacitor region, a buffer layer disposed on the substrate, a gate insulating layer disposed on the substrate, a lower capacitor electrode disposed on the gate insulating layer in the capacitor region, an interlayer insulating layer disposed on the substrate, and an upper capacitor electrode disposed on the interlayer insulating layer and facing the lower capacitor electrode, wherein regions of each of the buffer layer, the gate insulating layer, the interlayer insulating layer, the lower capacitor electrode, and the upper capacitor electrode have surfaces in which protrusions having the same shape as grain boundaries of the semiconductor layer are formed. The resultant capacitor has an increased surface area, and therefore, an increased capacitance.
Abstract:
A display device includes a display panel including a display area, a driving circuit area, a driving wire area, and a sealing area. The display panel includes a first substrate, a plurality of light-emitting devices disposed on the first substrate in the display area, a gate driver disposed on the first substrate in the driving circuit area and supplying a signal for driving the light-emitting device, a plurality of wires disposed on the first substrate in the driving wire area and transmitting a clock signal to the gate driver, and an organic structure disposed on the first substrate in the driving wire area, the plurality of wires include a scan clock signal wire for transmitting a scan clock signal, and a sensing clock signal wire for transmitting a sensing clock signal, and the scan clock signal wire and the sensing clock signal wire do not overlap the organic structure.
Abstract:
A unit pixel includes a circuit structure, first and second wiring patterns, an interlayer insulating layer, a planarization layer, and a light emission structure. The first wiring pattern disposed on the circuit structure has a first bump structure. The interlayer insulating layer covers the circuit structure and the first wiring pattern. The second wiring pattern disposed on the interlayer insulating layer overlaps the first wiring pattern and has a second bump structure. The planarization layer covers the interlayer insulating layer and the second wiring pattern and includes a via-hole exposing at least a portion of the second wiring pattern. The light emission structure contacts the second wiring pattern through the via-hole. The first and second wiring patterns and the interlayer insulating layer form a capacitor, the light emission structure includes an OLED, and the capacitor is directly connected to an anode of the OLED.
Abstract:
An organic light emitting display device includes a first substrate, a pixel structure, a second substrate, a reflective member, and a light transmitting member. The first substrate includes a plurality of pixel regions. Each of the pixel regions has sub-pixel regions and a reflective region surrounding the sub-pixel regions. The pixel structure is disposed in each of the sub-pixel regions on the first substrate. The second substrate is disposed on the pixel structure. The reflective member has an opening disposed in each of the sub-pixel regions, and is disposed in the reflective region of the second substrate. The light transmitting member covers the opening of the reflective member and partially overlaps the reflective member. The light transmitting member blocks ultraviolet rays and transmits a predetermined light.