Abstract:
A color conversation panel according to an embodiment may include partitioning walls disposed on a substrate, reflective layers disposed on outer surfaces of the partitioning walls, overcoats disposed outside on outer surfaces of the reflective layers and having water repellency, a spacer overlapping a part of the partitioning walls and protruding from a part of the overcoats, the spacer and the overcoats being formed on a same layer, and color conversion layers disposed on the overcoats and disposed in areas defined by the partitioning walls.
Abstract:
A liquid crystal display device, includes a display panel; a light guide plate to transfer light to the display panel; and a light source module on a side surface of the light guide plate to supply light to the light guide plate, the light source module including a light source to generate light; and a quantum dot unit between the light source and the light guide plate, the quantum dot unit extending along the side surface of the light guide plate and including a tube member filled with a resin including quantum dots, the tube member including a sealing part.
Abstract:
A display panel includes: a light emitting device to generate light; a plurality of color conversion patterns including: a first color conversion pattern including first scattering particles dispersed in the first color conversion pattern and configured to scatter the light of the light emitting device; and a second color conversion pattern including second scattering particles dispersed in the second color conversion pattern and configured to scatter the light of the light emitting device; a plurality of color filters including: a first color filter overlapping the first color conversion pattern; and a second color filter overlapping the second color conversion pattern; and a single, low index of refraction layer continuously extending in the surface direction to overlap the first and the second color conversion patterns. The low index of refraction layer has a refractive index lower than refractive indexes of the first and second color conversion patterns.
Abstract:
A color conversion panel according to an exemplary embodiment includes: a substrate; and a plurality of color conversion layers and a transmission layer that are disposed on the substrate, the plurality of color conversion layers including nanocrystals, wherein at least one color conversion layer of the plurality of color conversion layers includes a first color conversion layer and a second color conversion layer, the first color conversion layer is disposed between the substrate and the second color conversion layer, and the first and second color conversion layers are configured so that a wavelength of light color-converted in the first color conversion layer is shorter than a wavelength of light color-converted in the second color conversion layer.
Abstract:
An organic light-emitting display apparatus includes: a substrate including a first surface and a second surface opposite to each other; an organic emission unit disposed on the first surface of the substrate and including: an emission region configured to emit light; and a first transmission region configured to transmit external light; an encapsulation unit joined to the first surface of the substrate, the encapsulating unit configured to seal the organic emission unit from external air; a first optical layer configured to delay a phase of the external light; and a second functional layer configured to linearly polarize the external light, wherein the second function layer is disposed farther from the organic emission unit than the first functional layer and includes a second transmission region corresponding to the first transmission region.
Abstract:
A display apparatus includes a display panel including a first subpixel having a first primary color, a second subpixel having a second primary color; and a transparent subpixel; a panel driver which sets grayscale data of the first subpixel, the second subpixel and the transparent subpixel; a light source part which provides light to the display panel, where the light source comprises a first light source and a second light source having colors different from each other; and a light source driver which turns on the first light source during a first subframe, turns on the second light source during a second subframe, and turns on the first light source during a third subframe, and a first frame comprises the first subframe, the second subframe and the third subframe.
Abstract:
A display device includes a light source unit that emits a first light with a first wavelength, an optical filter that converts the first light to a second light, and an optical shutter that transmits or reflects the first light or the second light.
Abstract:
A color conversation panel according to an embodiment may include partitioning walls disposed on a substrate, reflective layers disposed on outer surfaces of the partitioning walls, overcoats disposed outside on outer surfaces of the reflective layers and having water repellency, a spacer overlapping a part of the partitioning walls and protruding from a part of the overcoats, the spacer and the overcoats being formed on a same layer, and color conversion layers disposed on the overcoats and disposed in areas defined by the partitioning walls.
Abstract:
A display panel may include a first display substrate and a second display substrate on the first display substrate. The second display substrate may include a plurality of pixel regions and a peripheral region adjacent to the pixel regions. The second display substrate may include a first color control pattern configured to emit light of a first color, a second color control pattern spaced apart from the first color control pattern in a first direction and configured to emit light of a second color different from the first color, and first and second light-blocking patterns in the peripheral region between the first and second color control patterns. The first and second light-blocking patterns may be spaced apart from each other, in a second direction crossing the first direction, to define a gap region.
Abstract:
A color conversion panel includes a first color conversion layer, a second color conversion layer, and a light wavelength conversion layer. The first color conversion layer includes a first semiconductor nanocrystal set for providing red light. The second color conversion layer neighbors the first color conversion layer and includes a second semiconductor nanocrystal set for providing first green light. The light wavelength conversion layer neighbors the second light conversion layer, may provide blue light, and includes a third semiconductor nanocrystal set for providing second green light.