Abstract:
A light sensitive circuit includes a light sensing capacitor and a driving transistor. The light sensing capacitor is configured to sense light of a predetermined one or more wavelengths. The driving transistor includes a gate electrode electrically connected to the light sensing capacitor and is configured to generate a light sensing current according to a voltage of the gate electrode in the driving transistor. A light sensing accuracy and a light sensing signal to noise ratio (SNR) of the display apparatus including a plurality of such light sensing capacitors may be improved relative to ones that do not include such light sensing capacitors.
Abstract:
A display apparatus includes a timing controller, a data driver and a display panel. The timing controller receives input image data at a first frequency substantially equal to a frame rate of an input image. The timing controller generates a data signal having the first frequency based on the input image data having the first frequency. The data driver converts the data signal into a data voltage. The display panel displays an image based on the data voltage.
Abstract:
A display device includes a timing controller, a data driver, and a display panel. The timing controller includes a first compensator receiving a first image data, selecting a temperature compensation value in accordance with the external temperature, and converting the first image data to a second image data on the basis of the selected temperature compensation value and a second compensator selecting a kickback voltage compensation value predetermined in accordance with the areas of the display panel and converting the second image data to the output image data on the basis of the kickback voltage compensation value selected in accordance with the areas.
Abstract:
In a touch substrate and a display apparatus, the touch substrate includes a first electrode, a second electrode, a first touch electrode and a blocking layer. The first electrode includes an opaque conductive material and extends along a first direction. The second electrode includes the opaque conductive material, extends along a second direction crossing the first direction, and has a gap through which the first electrode extends. The first touch electrode is formed on the first electrode and is electrically connected to the first electrode. The blocking layer overlaps the first and second electrodes.
Abstract:
A data driver includes a gamma voltage generator configured to generate gamma voltages based on a number of data bits of a pixel data; a first digital-to-analog block configured to generate a plurality of time-division gamma voltage signals respectively corresponding to a plurality of gamma voltage groups; a plurality of time-division gamma voltage line groups for transferring the plurality of time-division gamma voltage signals; a second digital-to-analog block configured to select a time-division gamma voltage signal among the time-division gamma voltage signals according to upper bits of the pixel data in each channel; a time-division gamma voltage select block configured to select a gamma voltage according to lower bits of the pixel data in each channel; and an output buffer block configured to output the selected gamma voltage in each channel.
Abstract:
A display device includes a display panel including sub-pixels, a first driver adjacent to a first side of the display panel to generate first signals, and a second driver adjacent to the first side to generate second signals. The display panel includes vertical lines including one ends disposed at the first side to apply the first signals to the sub-pixels, diagonal lines crossing the vertical lines to apply the second signals to the sub-pixels, and crossing lines crossing the vertical and diagonal lines. The diagonal lines include first diagonal lines including one ends at the first side and second diagonal lines including one ends at a second side adjacent to the first side. The crossing lines include one ends at the first side and the other ends at the second side. The crossing lines receive the second signals and apply the second signals to the second diagonal lines.
Abstract:
According to an embodiment, the display device includes a touch controller, an image processor, and a display driver. The touch controller is configured to output touch event information corresponding to a touch signal received from a touch panel. The image processor is configured to determine whether a host is in a sleep mode or a normal mode, and to output mixed image data obtained by overlapping an image displayed on a display panel and a marker corresponding to the touch event information while a host is in the sleep mode. The display driver is configured to output pixel driving signals corresponding to the mixed image data to the display panel. The touch controller or image processor is further configured to determine whether a touch input of a user to the touch panel meets a predetermined condition, and if the predetermined condition is met, output a wake-up signal to the host.
Abstract:
A method of driving a display panel is disclosed. In one aspect, the display panel includes a plurality of pixels arranged in odd and even rows and a plurality of odd and even gate lines respectively connected to the pixels of the corresponding odd and even rows. The method includes outputting odd gate signals to the odd numbered gate lines during two consecutive subframes and outputting even gate signals to the even numbered gate lines during two consecutive subframes. A frame is divided into two subframes.
Abstract:
A display device includes: a similar gray level block detector configured to detect a pixel data block in which a gray level difference between a plurality of pixel data included in an image signal is smaller than or equal to a threshold; a skin tone detector configured to detect the pixel data block including a skin tone; and a gamma processor configured to apply a first gamma to a plurality of pixel data included in the pixel data block when the pixel data block does not include the skin tone and apply a second gamma to the plurality of pixel data included in the pixel data block when the pixel data block includes the skin tone.
Abstract:
A pixel circuit includes: a main circuit including: a driving transistor that includes a gate terminal connected to a first node, a first terminal connected to a second node, and a second terminal connected to a third node; and an organic light-emitting element connected to the driving transistor and configured to control the organic light-emitting element by controlling a driving current corresponding to a data signal applied via a data line to flow into the organic light-emitting element; and a sub circuit including: a first compensation transistor that includes a gate terminal configured to receive a first gate signal, a first terminal connected to the first node, and a second terminal connected to a fourth node; and a second compensation transistor that includes a gate terminal configured to receive a second gate signal, a first terminal connected to the fourth node, and a second terminal connected to the third node.