Abstract:
An organic light emitting display device includes: a display panel including a plurality of pixel rows each including first pixel groups alternating with second pixel groups; a gate driver configured to provide a first group gate signal to the first pixel groups, and to provide a second group gate signal to the second pixel groups; a data driver configured to output data voltages to a plurality of output line groups; and a connection controller configured to connect the output line groups to a first data line group in response to a first connection control signal, and to connect the output line groups to a second data line group in response to a second connection control signal.
Abstract:
A display device includes a display panel including a plurality of pixels, a gray group data generator configured to receive current line data for pixels in a current row, and to generate current row gray group data based on the current line data, a horizontal crosstalk determiner configured to determine whether horizontal crosstalk occurs in the current row, a horizontal crosstalk compensator configured to compare the current row gray group data with adjacent row gray group data when the horizontal crosstalk is determined to occur in the current row, and to selectively adjust a plurality of gamma reference voltages according to a result of the comparison between the current row gray group data and the adjacent row gray group data, and a data driver configured to generate and provide data voltages corresponding to the current line data based on the selectively adjusted plurality of gamma reference voltages.
Abstract:
A pixel circuit for increasing accuracy of current sensing of an organic light-emitting diode (OLED) display is disclosed. In one aspect, the pixel circuit includes an OLED, a driving circuit, and first to third transistors. The driving circuit is configured to adjust a magnitude of a current flowing through the OLED based at least in part on a data signal received from a data line. The first transistor is configured to electrically connect the data line and a holding capacitor based at least in part on a scan signal. The second transistor is configured to electrically connect the holding capacitor and the driving circuit based at least in part on a write control signal. The third transistor is configured to electrically connect the data line and an anode electrode of the OLED based at least in part on a sensing control signal.
Abstract:
A scan driver includes scan-driving blocks, each including a first transistor having a gate coupled to a first node to supply a first power to an output terminal, a second transistor having a gate coupled to a second node to couple a second clock to the output terminal, a third transistor having a gate coupled to a first input to supply the first power to the first node, a fourth transistor having a gate coupled to a second input to supply a second power to the first node, and a fifth transistor having a gate coupled to a first clock to couple the first input to the second node. A first scan-driving block further includes a sixth transistor coupled between the second input and the fourth transistor gate, and a NOT gate configured to invert the first input signal and to supply the inverted signal to the sixth transistor gate.
Abstract:
A scan driver includes scan-driving blocks, each including a first transistor having a gate coupled to a first node to supply a first power to an output terminal, a second transistor having a gate coupled to a second node to couple a second clock to the output terminal, a third transistor having a gate coupled to a first input to supply the first power to the first node, a fourth transistor having a gate coupled to a second input to supply a second power to the first node, and a fifth transistor having a gate coupled to a first clock to couple the first input to the second node. A first scan-driving block further includes a sixth transistor coupled between the second input and the fourth transistor gate, and a NOT gate configured to invert the first input signal and to supply the inverted signal to the sixth transistor gate.
Abstract:
In a method of driving an organic light emitting display device, a first data signal constituting an image frame is sequentially written into first pixel circuits coupled to first scan-lines by sequentially performing a scanning operation on the first scan-lines in a first direction, a second data signal constituting the image frame is sequentially written into second pixel circuits coupled to second scan-lines by sequentially performing the scanning operation on the second scan-lines in a second direction, and the image frame is displayed by controlling the first and second pixel circuits to simultaneously emit light.
Abstract:
A pixel capable of displaying an image with uniform brightness is disclosed. In one aspect, the pixel includes an organic light emitting diode (OLED), a first transistor for controlling an amount of current that flows from a first power supply to a second power supply via the OLED in response to a voltage applied to a first node. The pixel also includes a second transistor that is coupled between a bias power supply and the first node and whose gate electrode is coupled to an emission control line. The pixel further includes a third transistor that is coupled between an anode electrode of the OLED and a feedback line and whose gate electrode is coupled to a control line.
Abstract:
A pixel includes a first capacitor connected between first and second nodes, a second capacitor connected between a first voltage line and the first node, a light emitting diode including a first electrode and a second electrode connected with a second voltage line, a first transistor including a first electrode, a second electrode, and a gate electrode connected with the second node, a second transistor including a first electrode, a second electrode, and a gate electrode which receives a scan signal, a third transistor including a first electrode, a second electrode, and a gate electrode which receives a first compensation scan signal, a fourth transistor including a first electrode, a second electrode, and a gate electrode which receives a second compensation scan signal, and a fifth transistor including a first electrode, a second electrode, and a gate electrode which receives a first light emitting signal.
Abstract:
An electronic device includes a display panel which includes a plurality of pixels and displays an image at each of multiple frames, a driving circuit which drives the multiple frames at multiple operating frequencies, a voltage generator which provides a voltage to the display panel, and a drive controller. The drive controller includes a representative frequency calculator which calculates a representative frequency, based on operating frequencies of ‘n’ number of frames before one frame of the multiple frames, and a compensating signal calculator which outputs a compensating signal, based on the representative frequency and a count number in the one frame. The drive controller transmits the compensating signal to the voltage generator, the voltage includes a reference voltage, the voltage generator generates the reference voltage based on the compensating signal, and the voltage generator provides the reference voltage to each of the plurality of pixels.
Abstract:
A display device includes a display panel including a plurality of pixels. At least one of the pixel includes a light emitting diode, a first transistor connected between a power line receiving a power source voltage and an anode of the light emitting diode, a second transistor connected between a data line and a first reference node, a first capacitor connected between the power line and the first reference node, a second capacitor connected between the first reference node and a second reference node, a third transistor connected between the first refence node and a reference voltage line receiving a reference voltage, a fourth transistor connected between an initialization voltage line receiving an initialization voltage and a drain of the first transistor, and a fifth transistor connected between the drain of the first transistor and the anode of the light emitting diode.