Abstract:
An organic light emitting display device having a stage circuit capable of creating a scan signal and a light emitting control signal. The stage circuit includes a control unit controlling a first node and a second node corresponding to signals of a first input terminal, a third input terminal, and a fourth input terminal, a first output unit supplying a light emitting control signal to a second output terminal corresponding to voltages at the first node and the second node, and a second output unit supplying a scan signal having different polarity than that of the light emitting control signal to a first output terminal corresponding to a signal of a second input terminal and voltages at the first node and the second node.
Abstract:
An organic light emitting display device having a stage circuit capable of creating a scan signal and a light emitting control signal. The stage circuit includes a control unit controlling a first node and a second node corresponding to signals of a first input terminal, a third input terminal, and a fourth input terminal, a first output unit supplying a light emitting control signal to a second output terminal corresponding to voltages at the first node and the second node, and a second output unit supplying a scan signal having different polarity than that of the light emitting control signal to a first output terminal corresponding to a signal of a second input terminal and voltages at the first node and the second node.
Abstract:
Disclosed is a liquid crystal display device, including: first and second substrates, which are spaced apart from each other by a predetermined interval while facing each other; a reflective polarizing plate disposed under the first substrate, and including a first refractive index layer and a second refractive index layer, which have different refractive indexes and are repeatedly stacked; first and second compensation layers sequentially stacked on the second substrate, and an upper polarizing plate including a polarizing layer formed on the second compensation layer; and a liquid crystal layer formed between the first and second substrates.
Abstract:
An organic light-emitting display panel includes a pixel unit connected to a plurality of scanning lines and a plurality of data lines, and including a plurality of pixels, a panel test unit connected to first ends of the plurality of data lines, and configured to output a panel test signal for testing the plurality of pixels, a plurality of data pads connected to second ends of the plurality of data lines, and an array test unit configured to selectively apply a plurality of array test signals to a pixel column of the pixel unit according to a plurality of array test control signals, and detect a signal output from the pixel column to which the plurality of array test signals are applied.
Abstract:
A display apparatus includes an array of pixels and dummy pixels. A plurality of first lines are connected to the pixels and the dummy pixels. A plurality of repair lines are connected to the dummy pixels and are selectively connected to the pixels. A plurality of second lines are connected to the pixels. At least one dummy line is connected to the dummy pixels. At least one dummy wiring is connected to the at least one dummy line and is selectively connected to one of the second lines.
Abstract:
Disclosed is a liquid crystal display device, including: first and second substrates, which are spaced apart from each other by a predetermined interval while facing each other; a reflective polarizing plate disposed under the first substrate, and including a first refractive index layer and a second refractive index layer, which have different refractive indexes and are repeatedly stacked; first and second compensation layers sequentially stacked on the second substrate, and an upper polarizing plate including a polarizing layer formed on the second compensation layer; and a liquid crystal layer formed between the first and second substrates.
Abstract:
A stage circuit including an output unit for supplying first or second power source to an output terminal is disclosed. The stage circuit may comprise a bidirectional driver for respectively supplying signals supplied to first and second input terminals, a first driver, and a second driver. The second driver controls the output unit to output the second power source to the output terminal without any voltage loss, corresponding to a second clock signal.
Abstract:
A scan driver may include a first stage, a second stage, and a third stage. The first stage may include a first output transistor. The first output transistor may have a first buffer value. The second stage may be electrically connected to the first output transistor and may include a second output transistor. The second output transistor may have a second buffer value. The third stage may be electrically connected to the second output transistor and may include a third output transistor. The third output transistor may have a third buffer value. At least one of the second buffer value and the third buffer value may be unequal to the first buffer value.
Abstract:
Provided is an organic light emitting display panel. The organic light emitting display panel includes a pixel unit including a plurality of pixels I displaying mutually different colors, a plurality of data pads electrically connected to wirings extending from the data lines, each of the plurality of data pads being connected to corresponding data lines, respectively, and an array test unit applying an array test signal to the plurality of pixels of the pixel unit, and sensing a current outputted from the plurality of pixels. The array test unit includes an array test pad electrically connected to a plurality of data pads through a plurality of array test switches.
Abstract:
A method of driving a display device includes: applying a first voltage at the first transistor to turn on the first transistor; maintaining the first voltage at the first transistor; applying a second voltage lower than the first voltage at the first transistor; wherein the applying of the first voltage comprises switching the fourth transistor according to the second scan signal to couple the gate electrode of the first transistor to the third power source, and switching the fifth transistor according to the light emission control signal to couple the first electrode of the first transistor to the first power source, and the applying of the second voltage comprises switching the second transistor according to the first scan signal to couple the first electrode of the first transistor to the data line, and switching the third transistor according to the first scan signal to diode-couple the first transistor.