Abstract:
A liquid crystal display includes a gate driver including stages, and a clock generator which receives a clock generation control signal, generates a clock signal and a clock bar signal based on one or more of the clock generation control signal, a gate-on voltage and a gate-off voltage, and outputs the clock signal and the clock bar signal to the gate driver. The clock generator includes an overcurrent protector unit which intercepts at least one of the clock signal and the clock bar signal when a voltage level of at least one of the gate-on voltage and the gate-off voltage is greater than a reference level.
Abstract:
In a method of generating correction data for each of a plurality of display devices, a characteristic distribution for initial display devices among the plurality of display devices may be obtained, center characteristic compensation data may be generated based on the characteristic distribution for the initial display devices, the center characteristic compensation data may be applied to subsequent display devices that are subsequent to the initial display devices among the plurality of display devices, mura correction data and image quality correction data may be generated by performing mura correction and image quality correction on each of the subsequent display devices to which the center characteristic compensation data are applied, and the center characteristic compensation data, the mura correction data and the image quality correction data may be written into each of the subsequent display devices.
Abstract:
A method of displaying an image on a display panel which comprises a plurality of pixels arranged as a matrix type includes measuring a tristimulus value of X, Y and Z values of a displayed image to generate a target curve, generating a corrected grayscale data of a red pixel, a green pixel and a blue pixel using X, Y and Z values of the target curve and converting the corrected grayscale data to a data voltage to provide a data line of the display panel with the data voltage.
Abstract:
In a method of generating correction data for a display device, measured tristimulus data at a maximum gray level are obtained, measured luminance and color coordinate profiles are obtained based on the measured tristimulus data, a target color coordinate profile is determined based on the measured color coordinate profile, measured red, green and blue maximum luminances of each pixel are obtained, a maximum target luminance of the each pixel is determined such that red, green and blue luminances of the each pixel become lower than or equal to the measured red, green and blue maximum luminances, respectively, a final target luminance profile is determined based on the measured luminance profile and the maximum target luminance of the each pixel, and correction data may be generated and stored in the display device based on the final target luminance profile and the target color coordinate profile.
Abstract:
A display apparatus includes a gamma controller configured to determine whether the target pixel unit is driven in both time division method and space division method based on a plurality of comparison values and a reference condition, and an output controller configured to generate normal gamma-data of the target pixel unit using a normal gamma curve if the plurality of comparison values satisfy the reference condition and to generate high gamma-data and low gamma-data of the target pixel unit using a high gamma curve and a low gamma curve in both time division method and space division method if the plurality of comparison values do not satisfy the reference condition.
Abstract:
A method of reducing a total, per device, measurements taking time in a calibration system that uses a sensor array that serially reports out its readings and a data processing unit that needs to receive the reported out readings in good order before allowing an under-measurement first display device to advance away from a measurements taking station includes the step of not driving the first display device with all of required full screen test images where each is a full screen display of only a respective one of a predetermined minimum number of grayscale values produced as a minimum number of needed full screen sample images and; in place of at least a first plurality of the not-produced full screen images, driving the under-measurement first display device with a partial screen multi-pattern that presents a plurality of different grayscale values including ones not presented by those of all of the full screen test images that are used to drive the under-measurement first display device. The serially reported out readings from the sensor array for the partial screen multi-pattern and for the full screen test images are obtained and used to generate virtual full screen sample images based on the obtained partial screen multi-pattern and for the full screen test images.
Abstract:
A display apparatus includes a display panel, a gate driver, a data driver and a driving controller. The display panel is configured to display an image based on input image data. The gate driver is configured to output gate signals to gate lines of the display panel. The data driver is configured to output data voltages to data lines of the display panel. The driving controller includes a first compensation lookup table and a second compensation lookup table which are configured to compensate the input image data. The driving controller is configured to select one of the first compensation lookup table and the second compensation lookup table based on a first color shift and a second color shift and to apply the selected one of the first compensation lookup table and the second compensation lookup table to the input image data.
Abstract:
A vision inspection apparatus includes an inspection controller which displays a grid pattern with a plurality of gray levels on a display panel, an imaging converter which drives a charge-coupled device with a predetermined or set exposure-time and converts the grid pattern displayed on the display panel into a grid pattern signal, a charge calculator which calculates a charge amount per unit time for each color of a reference gray level using a reference gray level signal, included in the grid pattern signal, and the set exposure-time, and an exposure-time calculator which calculates an optimum exposure-time for each color of the reference gray level based on a target charge amount of the reference gray level.
Abstract:
A gamma difference compensating apparatus includes a first gamma curve generating part, a front luminance measuring part, a front gamma calculating part, a second gamma curve generating part and a gamma compensating part. The first gamma curve generating part outputs a first gamma curve data. The front luminance measuring part measures a luminance of a left area from a front of the left area, measure a luminance of a right area from a front of the right area, and output a front luminance data. The front gamma calculating part outputs a front gamma data based on the front luminance data. The second gamma curve generating part applies the front gamma data to the first gamma data and output a second gamma curve data. The gamma compensating part compensates a gamma value of the left area and a gamma value of the right area.
Abstract:
A display apparatus includes a display panel that comprises a plurality of pixels, a first image data corrector configured to calculate a Mura correction value of input data based on gamma correction data of the input data, to add the Mura correction value to the input data to generate added input data, and to generate gamma correction data of the added input data, and a data driver configured to drive the plurality of pixels based on the gamma correction data provided from the first image data corrector.