Abstract:
A display device includes a display panel including gate lines, data lines, and pixels each connected to a corresponding gate line and a corresponding data line, a gate driver configured to drive the gate lines, a data driver configured to drive the data lines, and a timing controller configured to generate control signals to control the data driver and to apply a vertical synchronization start signal including a first pulse, a second pulse, a first gate pulse signal, and a second gate pulse signal to the gate driver. The gate driver applies gate driving signals to the gate lines to pre-charge the pixels in response to the first pulse of the vertical synchronization start signal and the first gate pulse signal, and to main-charge the pixels in response to the second pulse of the vertical synchronization start signal and the second gate pulse signal.
Abstract:
A display panel includes a plurality of pixels. Each pixel includes a plurality of different-color sub-pixels and a coupling sub-pixel that overlaps at least one color sub-pixel so as to be configured to be capacitively coupled to the at least one color sub-pixel to be thereby driven so as to display a color different from that of the different-color sub-pixels.
Abstract:
A stereoscopic image display system includes a three-dimensional (3D) image signal generator, a display panel, a timing controller, a data driver, and a gate driver. The 3D image signal generator generates left-eye data and right-eye data on the basis of an image signal outputs the left-eye data and the right-eye data to the timing controller. The timing controller outputs the left-eye data and the right-eye data having a first frequency to the data driver in a first mode and outputs left-eye frame data and right-eye frame data having a second frequency to the data driver in a second mode. Two pixels, which are respectively connected to an i-th gate line and an (i+1)th gate line among the gate lines and to a same data line among the data lines, are operated with the same driving time in the first and second modes.
Abstract:
A stereoscopic image display system includes a three-dimensional (3D) image signal generator, a display panel, a timing controller, a data driver, and a gate driver. The 3D image signal generator generates left-eye data and right-eye data on the basis of an image signal outputs the left-eye data and the right-eye data to the timing controller. The timing controller outputs the left-eye data and the right-eye data having a first frequency to the data driver in a first mode and outputs left-eye frame data and right-eye frame data having a second frequency to the data driver in a second mode. Two pixels, which are respectively connected to an i-th gate line and an (i+1)th gate line among the gate lines and to a same data line among the data lines, are operated with the same driving time in the first and second modes.
Abstract:
A display apparatus includes a signal controller, a panel driver, and a display panel. The signal controller includes N functional blocks that process input image signals to output image data signals and convert input control signals to internal control signals to output the internal control signals. The panel driver converts the image data signals to image data voltages in response to the internal control signals to output the image data voltages and outputs a gate driving voltage. The display panel receives the gate driving voltage and the image data voltages to display an image. A screen of the display panel includes a first area and a second area different from the first area. First input image signals corresponding to the first area among the input image signals are processed by I functional blocks (I is smaller than N) among the N functional blocks.
Abstract:
Disclosed is a display apparatus including: a display panel including pixels connected with a plurality of gate lines and a plurality of data lines; a gate driver supplying gate signals to the gate lines; and a data driver supplying data voltages to the data lines. The data driver includes a temperature measurer generating a temperature signal of the data driver.
Abstract:
Provided is a color compensation device of an electronic device including a first color converter, a parameter generator, an operator, and a second color converter. The first color converter receives an image signal, converts the image signal into initial tristimulus values based on a basic look-up table, and generates a conversion look-up table using the basic look-up table. The parameter generator extracts 2N number of representative parameters from the conversion look-up table and generates N number of compensation parameters on the basis of the 2N number of representative parameters. N is a natural number. The operator generates compensated tristimulus values at each gray scale using the N number of compensation parameters, generates a compensation look-up table, and converts the initial tristimulus values into the compensated tristimulus values using the compensation look-up table. The second color converter converts the compensated tristimulus values into a compensated image signal.
Abstract:
A display apparatus includes a plurality of primary color pixels and a plurality of white pixels. The white pixels include a first white pixel to receive a first white pixel signal generated based on a first gamma curve and a second white pixel to receive a second white pixel signal generated based on a second gamma curve.
Abstract:
A timing controller for a display apparatus includes a dithering unit outputting a first signal in which bit widths of image signals are reduced, an image pattern detector detecting an image pattern of the image signals and outputting a dithering off signal corresponding to the detected image pattern, a dithering selector receiving the first signal and converts the first signal to a second signal in response to the dithering off signal, and a response time compensator generating a present image signal from the second signal and compensates a liquid crystal response time in accordance with a difference between the present image signal and a first previous image signal to output a data signal.
Abstract:
A display apparatus includes a plurality of pixels connected to a plurality of gate lines and a plurality of data lines and a timing controller, in which each pixel includes a first sub-pixel and a second sub-pixel. In such a display apparatus, the timing controller provides the first sub-pixel and the second sub-pixel with a first data signal and a second data signal corresponding to one of a high gray scale curve and a low gray scale curve, alternately every frame, when the image signal is a first type of image signal, and the timing controller provides the first sub-pixel with a first data signal corresponding to the high gray scale curve and the second sub-pixel with a second data signal corresponding to the low gray scale curve when the image signal is a first type of image signal.