Abstract:
A connection device for a core drilling assembly is disclosed, the connection device connectible between a head assembly of a core drilling assembly and an inner tube of the core drilling assembly. The connection device comprises a first connection portion and a second connection portion, and includes a connection mechanism arranged to facilitate engagement of the first and second connection portions with each other and disengagement of the first and second connection portions from each other.
Abstract:
A rod handling assembly 10 has a surface engagement mechanism 12 capable of engaging an exposed surface of a drill rod R and a holding mechanism 14 coupled to the surface engagement mechanism 12. The system 10 and more particularly the mechanisms 12 and 14 engage and hold the rod R from a location radially adjacent a circumferential surface of the rod R inboard of its opposite ends, rather than from an end of the rod R. The surface engagement mechanism 12 is a distributed mechanism having two parts 12a and 12b that act at axially spaced locations on the rod R. The holding mechanism 14 is located and operates on the rod R between these axially spaced locations. The surface engagement mechanism 12 initially operates to engage the surface of the rod R which may for example be lying on a rod tray, to enable the rod to be lifted from a tray. Thereafter the holding mechanism 14 is operable to support and hold the rod.
Abstract:
A connection device for a core drilling assembly connectible between a head assembly of a core drilling assembly and an inner tube of the core drilling assembly. The connection device has a first connection portion and a second connection portion, and has a connection mechanism arranged to facilitate engagement of the first and second connection portions with each other and disengagement of the first and second connection portions from each other.
Abstract:
A valve system for an inner tube assembly is described. The inner tube assembly is arranged to be used in a drilling system to retrieve a core sample, and is arranged to be insertable into a drill string of the drilling system at a first end of the drill string. The valve system is arranged to be configurable in a first closed configuration, an open configuration, and a second closed configuration. The valve system moves to the first closed configuration when fluid is pumped along an interior region of the drill string towards the inner tube assembly in a direction from the first end of the drill string to the inner tube assembly. The valve system is arranged such that, when in the first closed configuration, a pressure of the fluid increases to facilitate deploying the inner tube assembly towards a second end of the drill string. The valve system moves to the open configuration in response to the inner tube assembly reaching a vicinity of the second end of the drill string and being prevented from moving further towards the second end of the drill string. The valve system is arranged such that, when in the open configuration, fluid can flow to a drill bit located at or near the second end of the drill string. The valve system moves to the second closed configuration when fluid is pumped along the interior region of the drill string towards the inner tube assembly in a direction from the second end of the drill string to the inner tube assembly. The valve system is arranged such that, when in the second closed configuration, the pressure of the fluid increases to facilitate retrieving the inner tube assembly from the vicinity of the second end of the drill string.
Abstract:
A rod handling assembly 10 has a surface engagement mechanism 12 capable of engaging an exposed surface of a drill rod R and a holding mechanism 14 coupled to the surface engagement mechanism 12. The system 10 and more particularly the mechanisms 12 and 14 engage and hold the rod R from a location radially adjacent a circumferential surface of the rod R inboard of its opposite ends, rather than from an end of the rod R. The surface engagement mechanism 12 is a distributed mechanism having two parts 12a and 12b that act at axially spaced locations on the rod R. The holding mechanism 14 is located and operates on the rod R between these axially spaced locations. The surface engagement mechanism 12 initially operates to engage the surface of the rod R which may for example be lying on a rod tray, to enable the rod to be lifted from a tray. Thereafter the holding mechanism 14 is operable to support and hold the rod.
Abstract:
A valve system for an inner tube assembly is described. The inner tube assembly is arranged to be used in a drilling system to retrieve a core sample, and is arranged to be insertable into a drill string of the drilling system at a first end of the drill string. The valve system is arranged to be configurable in a first closed configuration, an open configuration, and a second closed configuration. The valve system moves to the first closed configuration when fluid is pumped along an interior region of the drill string towards the inner tube assembly in a direction from the first end of the drill string to the inner tube assembly. The valve system is arranged such that, when in the first closed configuration, a pressure of the fluid increases to facilitate deploying the inner tube assembly towards a second end of the drill string. The valve system moves to the open configuration in response to the inner tube assembly reaching a vicinity of the second end of the drill string and being prevented from moving further towards the second end of the drill string. The valve system is arranged such that, when in the open configuration, fluid can flow to a drill bit located at or near the second end of the drill string. The valve system moves to the second closed configuration when fluid is pumped along the interior region of the drill string towards the inner tube assembly in a direction from the second end of the drill string to the inner tube assembly. The valve system is arranged such that, when in the second closed configuration, the pressure of the fluid increases to facilitate retrieving the inner tube assembly from the vicinity of the second end of the drill string.
Abstract:
A rod handling assembly 10 has a surface engagement mechanism 12 capable of engaging an exposed surface of a drill rod R and a holding mechanism 14 coupled to the surface engagement mechanism 12. The system 10 and more particularly the mechanisms 12 and 14 engage and hold the rod R from a location radially adjacent a circumferential surface of the rod R inboard of its opposite ends, rather than from an end of the rod R. The surface engagement mechanism 12 is a distributed mechanism having two parts 12a and 12b that act at axially spaced locations on the rod R. The holding mechanism 14 is located and operates on the rod R between these axially spaced locations. The surface engagement mechanism 12 initially operates to engage the surface of the rod R which may for example be lying on a rod tray, to enable the rod to be lifted from a tray. Thereafter the holding mechanism 14 is operable to support and hold the rod.