Abstract:
Provided is an image pickup device, including: a first trench provided between a plurality of pixels in a light-receiving region of a semiconductor substrate, the semiconductor substrate including the light-receiving region and a peripheral region, the light-receiving region being provided with the plurality of pixels each including a photoelectric conversion section; and a second trench provided in the peripheral region of the semiconductor substrate, wherein the semiconductor substrate has a variation in thickness between a portion where the first trench is provided and a portion where the second trench is provided.
Abstract:
Provided is an image pickup device, including: a first trench provided between a plurality of pixels in a light-receiving region of a semiconductor substrate, the semiconductor substrate including the light-receiving region and a peripheral region, the light-receiving region being provided with the plurality of pixels each including a photoelectric conversion section; and a second trench provided in the peripheral region of the semiconductor substrate, wherein the semiconductor substrate has a variation in thickness between a portion where the first trench is provided and a portion where the second trench is provided.
Abstract:
Provided is an image pickup device, including: a first trench provided between a plurality of pixels in a light-receiving region of a semiconductor substrate, the semiconductor substrate including the light-receiving region and a peripheral region, the light-receiving region being provided with the plurality of pixels each including a photoelectric conversion section; and a second trench provided in the peripheral region of the semiconductor substrate, wherein the semiconductor substrate has a variation in thickness between a portion where the first trench is provided and a portion where the second trench is provided.
Abstract:
Provided is an image pickup device, including: a first trench provided between a plurality of pixels in a light-receiving region of a semiconductor substrate, the semiconductor substrate including the light-receiving region and a peripheral region, the light-receiving region being provided with the plurality of pixels each including a photoelectric conversion section; and a second trench provided in the peripheral region of the semiconductor substrate, wherein the semiconductor substrate has a variation in thickness between a portion where the first trench is provided and a portion where the second trench is provided.
Abstract:
Provided is an image pickup device, including: a first trench provided between a plurality of pixels in a light-receiving region of a semiconductor substrate, the semiconductor substrate including the light-receiving region and a peripheral region, the light-receiving region being provided with the plurality of pixels each including a photoelectric conversion section; and a second trench provided in the peripheral region of the semiconductor substrate, wherein the semiconductor substrate has a variation in thickness between a portion where the first trench is provided and a portion where the second trench is provided.
Abstract:
There is provided a solid-state imaging device including: a pixel region that includes a plurality of pixels arranged in a two-dimensional matrix pattern. Some of the plurality of pixels are configured to be phase difference detection pixels that include a photoelectric conversion section disposed on a semiconductor substrate and a light blocking film disposed above a portion of the photoelectric conversion section. In particular a location of the light blocking film for the phase difference detection pixels varies according to a location of the phase difference detection pixel. For example, the location of the light blocking film for a phase difference detection pixel positioned at a periphery of the pixel region is different than a location of the light blocking film for a phase difference detection pixel positioned in a center portion of the pixel region.
Abstract:
Provided is an image pickup device, including: a first trench provided between a plurality of pixels in a light-receiving region of a semiconductor substrate, the semiconductor substrate including the light-receiving region and a peripheral region, the light-receiving region being provided with the plurality of pixels each including a photoelectric conversion section; and a second trench provided in the peripheral region of the semiconductor substrate, wherein the semiconductor substrate has a variation in thickness between a portion where the first trench is provided and a portion where the second trench is provided.