Abstract:
A sample introduction device 10 includes a tube holding section 21 and a sample removing mechanism 40. The sample removing mechanism 40 removes a sample 6 in a sample tube 2 held by the tube holding section 21. Thus, in the sample introduction device 10, the sample 6 in the sample tube 2 held by the tube holding section 21 can be automatically removed. As a result, the operator no longer needs to perform an operation of taking out the sample 6 from the sample tube 2. Thus, a work load on the operator can be reduced.
Abstract:
A sample introduction device includes a tube holding unit 10, a tube heating unit 20, and a movement mechanism 30. The tube holding unit 10 holds a sample tube 1. The tube heating unit 20 comes into contact with the sample tube 1 held in the tube holding unit 10 and heats the sample tube 1 to desorb sample components in the sample tube 1. The tube holding unit 10 and the tube heating unit 20 are attached to the movement mechanism 30 so as to be able to move separately. The movement mechanism 30 includes a nut 32 which can be attached to and detached from the tube holding unit 10 and the tube heating unit 20, and a support shaft 31 which supports the nut 32 such that the nut 32 can move.
Abstract:
A carrier gas flow path of at least from a trap to an analyzing portion is shared between a state wherein a sample component is trapped within the trap and a state wherein the sample component is not trapped within the trap. In this case, even after the sample has been introduced into the analyzing portion through the carrier gas flow path, there is a time interval over which the carrier gas flows within the carrier gas flow path. This makes it possible, through the carrier gas that flows within the carrier gas flow path afterward, to remove the sample component from within the flow path, despite there being a sample component within the carrier gas flow path at the time of sample introduction, thus making it possible to prevent the sample component from remaining within the flow path after sample introduction.
Abstract:
A heat retention start timing of each sample container is determined based on a room temperature detected by a room temperature sensor, and a starting temperature and an ending temperature of each sample at a time of programmed temperature analysis that are stored in an analysis condition storage section. Since cooling speed of each sample container varies depending on the room temperature, the cooling time (A12, B12, C12, . . . ) of each sample container may be predicted based on the ending temperature of each sample at the time of programmed temperature analysis, the starting temperature of a next sample at the time of the programmed temperature analysis, and the room temperature. By determining the heat retention start timing of each sample container according to the cooling time (A12, B12, C12, . . . ) of each sample container predicted in the above manner, a margin time (A13, B13, C13, . . . ) after the cooling time may be prevented from becoming unnecessarily long. Accordingly, the processing performance may be improved compared to a conventional configuration where the heat retention start timings of sample containers are shifted by fixed time intervals.
Abstract:
In a gas sample analysis device including a metering tube, sample gas supply channel, carrier gas supply channel, evacuation channel and collection tube, there is provided a first channel switching valve which switches between a load state in which the metering tube is interposed between said sample gas supply channel and the evacuation channel and an injection state in which the metering tube is interposed between the sample gas supply channel and gas analysis device; and a second channel switching valve which, in the load state or injection state, switches between a collection tube interposition state in which the collection tube is interposed between the sample gas supply channel and the metering tube or between the metering tube and the gas analysis device, and a collection tube shunt state in which the collection tube is not interposed.
Abstract:
The present invention provides a method and apparatus for rapidly extracting the analyte existing in the liquid phase in analyzing an analyse “having a large partition coefficient in gas-liquid equilibrium”, “having a high water solubility”, or “having a low olfactory threshold” by a gas-liquid contact extraction method, and further provides, a method and apparatus for unmanned continuous sample introduction of the analyte to a GC or the like for a long time. In the present invention, using a gas-liquid contact extractor to which a sample liquid is continuously introduced from above and a purge gas from beneath, the analyte in the sample liquid is extracted by gas-liquid contact between the sample liquid and the purge gas. A discharge pipe is connected to the bottom of the gas-liquid contact extractor, the pipe having a liquid sump through which the sample liquid is discharged, while blocking the outflow of the purge gas from the liquid sump.
Abstract:
A switching mechanism 110 can perform switching to a pressurized state in which gas is supplied from a pipe 203 to an insertion tube 101, or a derivation state in which gas in a head space 23 that is pressurized is derived from the insertion tube 101 to the pipe 207 via a collection unit 104. The switching mechanism 110 includes a discharge valve 103 that puts the insertion tube 101 and the pipe 207 into a non-communication state in the pressurized state and puts the insertion tube 101 and the pipe 207 into a communication state in the derivation state. A resistance pipe 206 supplies gas to a channel between the collection unit 104 and the discharge valve 103 in the derivation state.
Abstract:
A sample introduction device 100 includes a heating unit 102, an ultraviolet irradiation unit 103, and a sample supply part 106. The heating unit 102 vaporizes a sample 22 by heating externally a container 2 in which the sample 22 is enclosed. The ultraviolet irradiation unit 103 causes ultraviolet rays to pass through the container 2 and irradiates the sample 22 with the ultraviolet rays. The sample supply part 106 supplies the sample vaporized in the container 2 to a gas chromatograph 1 side.
Abstract:
The present invention provides a method and apparatus for rapidly extracting the analyte existing in the liquid phase in analyzing an analyte “having a large partition coefficient in gas-liquid equilibrium”, “having a high water solubility”, or “having a low olfactory threshold” by a gas-liquid contact extraction method, and further provides, a method and apparatus for unmanned continuous sample introduction of the analyte to a GC or the like for a long time. In the present invention, using a gas-liquid contact extractor to which a sample liquid is continuously introduced from above and a purge gas from beneath, the analyte in the sample liquid is extracted by gas-liquid contact between the sample liquid and the purge gas. A discharge pipe is connected to the bottom of the gas-liquid contact extractor, the pipe having a liquid sump through which the sample liquid is discharged, while blocking the outflow of the purge gas from the liquid sump.
Abstract:
A sample introduction device having a channel configuration which allows recapture of samples and in which thorough purging is performed so that no sample components remain inside the channel. In the trap capture process, a first six-way switching valve is placed in state where ports a-f, b-c and d-e are connected, a second six-way switching valve is placed in state where ports a-b, c-d and e-f are connected, and an electromagnetic valve is opened. Carrier gas is introduced through a carrier gas channel, and is discharged via the first six-way valve-sample channel-second six-way switching valve-trap channel-second six-way switching valve-channel-first six-way valve-discharge channel. Carrier gas is also introduced through the path going through the electronic control flow controller, so the operation of stabilization of the analysis channel continues to be performed.