摘要:
An electron emitting device (100) includes a first electrode (12), a second electrode (52), and a semi-conductive layer (30) provided between the first electrode (12) and the second electrode (52). The semi-conductive layer (30) includes a porous alumina layer (32) having a plurality of pores (34) and silver (42) supported in the plurality of pores (34) of the porous alumina layer (32).
摘要:
The present invention provides a cell stimulation device capable of uniformly electrically stimulating cells intended to be electrically stimulated, and of preventing medium components from decomposing and depositing. [Solution] The cell stimulation device according to the present invention is intended to stimulate the cells being cultured in a culture medium, and is characterized in that the cell stimulation device includes an electron emission element for feeding electric charges to the culture medium via a gas phase, and an electric charge collecting electrode for collecting the electric charges from the culture medium, the electron emission element includes a lower electrode, a surface electrode, and an intermediate layer disposed between the lower electrode and the surface electrode, and the electric charge collecting electrode is disposed so as to be contactable with the culture medium.
摘要:
An electron emission element of the present invention includes a lower electrode, a surface electrode, and a silicone resin layer disposed between the lower electrode and the surface electrode, wherein the surface electrode includes a silver layer, and the silver layer is in contact with the silicone resin layer.
摘要:
An ion generation apparatus according to the present invention includes an electron emission device, an opposite electrode, and a controller, the electron emission device includes a lower electrode, a surface electrode, and an intermediate layer provided between the lower electrode and the surface electrode, the opposite electrode is provided to be opposite to the surface electrode, and the controller is provided to apply a voltage to the surface electrode, the lower electrode, or the opposite electrode such that a potential of the surface electrode becomes higher than a potential of the lower electrode and a potential of the opposite electrode in a positive ion mode.
摘要:
The electron capture detector (100) is a device for detecting a sample (α1). The electron capture detector (100) includes a detection cell (1), a sample inlet (2), and an electron emitting element (20). The detection cell (1) forms a reaction chamber (6). The sample inlet (2) introduces a first carrier gas containing the sample (α1) into the reaction chamber (6). The electron emitting element (20) emits electrons (β) into the reaction chamber (6). An ion (α2) derived from the sample component is generated as a result of the electron emitting element (20) emitting electrons (β) into the reaction chamber (6).
摘要:
An analysis device includes an electron emission element, a collector, an electric field former, a power source, and a controller. The electron emission element includes a bottom electrode, a surface electrode, and an intermediate layer arranged between the bottom electrode and the surface electrode. The power source and the controller allow application of a voltage between the bottom electrode and the surface electrode. The electric field former forms an electric field in an ion movement region where anions directly or indirectly generated by electrons emitted from the electron emission element move toward the collector. The collector and the controller allow measurement of a current waveform of an electric current made to flow by arrival of anions at the collector. The controller regulates, based on the current waveform, a voltage applied between the bottom electrode and the surface electrode.
摘要:
An analysis apparatus includes an ionization section, an ion separation section, and an ion detection section. The ionization section generates one or more sample component-derived ions. The ion separation section separates the ions in accordance with mobility of the ions. The ion detection section detects the ion which passes through the ion separation section. The ionization section includes a reaction chamber and an electron emission element. A sample is introduced to the reaction chamber. The electron emission element emits an electron to the reaction chamber.
摘要:
An electron emitting device includes a lower electrode, a surface electrode, an electron acceleration layer between the lower electrode and the surface electrode, and an electrode selecting unit. The electron acceleration layer is made of at least an insulating material. At least one of the lower electrode and the surface electrode is a stripe-pattern electrode including a plurality of unit electrodes that are regularly arranged. The electrode selecting unit sequentially selects, from among the plurality of unit electrodes, a unit electrode to which a voltage is to be applied. A voltage is applied between the lower electrode and the surface electrode to accelerate electrons between the lower electrode and the surface electrode, so that the electrons are emitted from the surface electrode.
摘要:
This electron emitting element includes a lower electrode, a surface electrode facing the lower electrode, a resistance layer arranged between the lower electrode and the surface electrode, and an insulating layer arranged between the lower electrode and the surface electrode. The resistance layer is an insulating resin layer containing conductive fine particles in a dispersed state. The insulating layer has a peripheral region for defining the electron emission region, and an emission control region which is arranged so as to overlap the electron emission region defined by the peripheral region. The emission control region is configured by a line-shaped insulating layer, a plurality of dot-shaped insulating layers, or both a line-shaped insulating layer and a plurality of dot-shaped insulating layers. The percentage of an area that the emission control region represents within an area of an electron emission region defined by the peripheral region is 2% or more and 60% or less.
摘要:
An electron emission element (20) includes a first electrode (30a) and a second electrode (40) which are arranged facing each other, an intermediate layer (50) that is provided between the first electrode (30a) and the second electrode (40), and an insulating layer (60) that is formed with a thickness d1 on a substrate (30). A level difference between the insulating layer (60) and the first electrode (30a) is smaller than the thickness d1 of the insulating layer (60).